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a b s t r a c t

For social robots to respond to humans in an appropriate manner, they need to use apt affect displays,
revealing underlying emotional intelligence. We present an artificial emotional intelligence system for
robots, with both a generative and a perceptual aspect. On the generative side, we explore the expressive
capabilities of an abstract, faceless, creature-like robot, with very few degrees of freedom, lacking both
facial expressions and the complex humanoid design found often in emotionally expressive robots. We
validate our system in a series of experiments: in one study, we find an advantage in classification for
animated vs static affect expressions and advantages in valence and arousal estimation and personal
preference ratings for both animated vs static and physical vs on-screen expressions. In a second
experiment, we show that our parametrically generated expression variables correlate with the intended
user affect perception. Combining the generative system with a perceptual component of natural
language sentiment analysis, we show in a third experiment that our automatically generated affect
responses cause participants to show signs of increased engagement and enjoyment compared with
arbitrarily chosen comparable motion parameters.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The ability to express emotion through nonverbal means can be an
effective tool for computational and mechanical systems which
interact with people. Coulson's component process view of emotions
is defined as the “affective significance of a series of evaluations”
(Cañamero and Aylett, 2008). This relationship between cognition and
evaluation often results in some physical behavior such as a smile or
scream. These physical behaviors are usually an unconscious reaction
and can be considered representations of one's internal states.

There is a large body of evidence which supports facial expressions
and prosodic cues as being indicative of a person's internal emotional
state (Ekman, 1993; Fridlund et al., 1987; Schuller et al., 2006, 2011).
However, the question of whether pose and body movements are
reflections of internal emotional states has been subject to debate for
many years. Some studies suggest emotional body language and
physical expression are used primarily for social and communicative
purposes rather than an unconscious expression of internal emotion
(Fridlund,1991; Kraut and Johnston,1979). Though in more recent years
evidence has been mounting which suggests the opposite is true. There
is indeed a direct relationship between external physical behavior and
emotional states (Inderbitzin et al., 2011; Walbott, 1998). In fact, Aviezer

et al. (2012) declare that body language instead of facial expression
better broadcasts what a person is experiencing especially in circum-
stances of extreme positively or negatively valenced emotions.

Other research also demonstrates that gesture is useful for
conveying information other than affect and is a component of the
speech planning process (Alibali et al., 2000; Kita et al., 2007). In
essence, gesture aids speech generation beyond lexical retrieval by
helping speakers to organize and conceptualize spatial informa-
tion. Movement is also important for interactive scenarios. The
timing of visual cues including movement illustrators and gaze
plays an important role in the collaborative process of conversa-
tion (Bavelas et al., 2002; Bavelas and Chovil, 2006). In fact,
Bavelas and Chovil (2000) describe an integrated model of com-
munication which unifies the visible and audible components of
face-to-face dialogue.

Though the debate concerning the true function of body pose and
body movements remains, and it appears the use of gesture has many
functions, it is largely accepted that, at some level, people are able to
associate postures and movements with particular emotions (de
Gelder, 2006; Nele Dael and Scherer, 2012; Coulson, 2004; Krauss et
al., 1991; Kipp and Martin, 2009). There is even evidence of the brain
processing emotional body language unconsciously and without
reliance on the primary visual cortex (de Gelder and Hadjikhani,
2006). The human ability to recognize emotion through body lan-
guage is an important trait and quite relevant to the field of affective
computing. Additionally, the capacity for processing emotion through
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a non-conscious “affective channel” is an important attribute which
strengthens the argument for emotionally expressive machines
(Picard, 1995). This enables communication without increased cogni-
tive function from the user. This is especially important in machine–
human social interactions in which the machine should support the
natural tendencies of human communication.

In this paper, we further explore the use of body language and
physical motion of a robot as a means for expressing emotion.
Expressive movements should not merely be considered a sequence
of varied positions, but rather an additional form of communication
and a behavior which can carry influence in a socially interactive
environment (Frijda, 1987). Physical behaviors have components
which are both representative and interactive, often modifying the
relationship and emotions among multiple actors.

Robots that demonstrate a sensitivity to people's emotional
states by responding with such expressive movements and beha-
viors enable more natural, engaging, and comfortable human–
robotic interactions (Kozima and Yano, 2001; Breazeal and Arya-
nanda, 2002; Castellano et al., 2010). An emotionally responsive
and expressive robot can be incredibly effective in social situations
such as in learning and teaching environments (Scheutz et al.,
2006) by communicating pieces of information including levels of
compassion, awareness, accuracy, and competency all through a
non-conscious affective channel. For these reasons designing and
developing emotionally expressive and perceptive robots has been
a focus of many researchers in the field as described in Section 2.

We contribute to this research by examining a robot's ability to
(1) express emotion using non-facial physical behaviors and
(2) autonomously generate affective behaviors. We investigate
several questions. What aspects of human physical emotional
expression can be translated to robotics? Can limitations such as
range of motion, the number of degrees of freedom (DoFs),
velocity restrictions, and non-humanoid design be surmounted
so that a robot can still be naturally and intuitively communicative
through physical expression? Can emotionally perceptive robots
offer increased levels of engagement in human robotic interactions
by responding with expressive movements?

We address these questions by first reviewing a number of
strategies and efforts to communicate emotion through a nonverbal
channel in animation and robotics. Next, we introduce our robot,
Shimi, and describe our own efforts for enabling Shimi to convey
affective behavior through physical gestures and evaluate our efforts
with a user study. We then describe a set of variables we believe to be
essential to creating emotionally expressive motion and behavior.
Using these variables, we introduce a novel computational architec-
ture for algorithmically generating affective physical behaviors in
Shimi which we evaluate with additional user studies. Finally, we
evaluate the entire systemwith a final user study based on a human–
robotic interaction involving communication.

2. Emotionally expressive systems

2.1. Utility of affective computing

Some debate in the HCI community exists regarding whether
machines should attempt to detect and display emotion. Emotional
displays can allow observers to interpret a person's beliefs and
intentions. However, Muller (2004) argues that there is currently
no method for discriminating between parts and wholes. For
example, a computer user might demonstrate frustration for any
number of reasons such as a faulty mouse or a non-user friendly
software interface. An emotionally intelligent machine would detect
the frustration, interpret it as resulting from the whole experience,
and modify its own behavior accordingly. Should the machine
modify its behavior without fully understanding the source of the

frustration? Muller postulates that doing so might not be the optimal
solution and ultimately could lead to even more distraction and
frustration for the user.

Though differentiating between the possible sources and causes of
emotions may be difficult, the amount of useful information within
the emotional signal is so significant that the common view is that the
benefits of emotional intelligence outweigh any potential mishaps.
This is especially true in the context of sociable robots in which the
machine is a partner and not merely a tool. In social settings, emotions
can be used as a means of influence to elicit responses from other
contributors and improve group efficiency by minimizing social confl-
icts (Frank, 1988; Campos et al., 2003; Frijda, 1987; Simon, 1967).
Leveraging these benefits requires functionalities for both emotion
detection and synthesis and evaluation is based on whether such
emotional intelligence benefits an agent's reasoning process, improves
performance, and creates human–computer interactions that are
effective, productive, and enjoyable.

2.2. Virtual agents

The idea of turning nonliving objects into expressive beings
with an abundance of personality has been a hallmark of computer
animation for decades. Lasseter (1987) describes the use of pose,
motion, and acceleration in animating the iconic Pixar lamp,
Luxo Jr. Some of the most important techniques Lasseter presents
are “staging” and “exaggeration” which together represent the
artistry of presenting an idea so that it is unmistakably clear by
developing its essence to extreme proportions. “If a character is
sad, make him sadder; if he is bright, make him shine; worried,
make him fret; wild, make him frantic.”

Studies have shown that these ideas are appropriate for robots
as well. Gielniak and Thomaz (2012) demonstrate that it is not
human-like motions, but rather the exaggerated cartoon-like
motions of a robot which are most effective for yielding the
benefits of increased partner engagement and entertainment
value. The interactive graphics-based agent, Rea, is a virtual real-
estate agent who uses gestures, gaze, and facial expressions as an
additional communicative and expressive layer to accompany her
speech (Cassell et al., 2000). Nayak and Turk (2005) describe how
emotional expression in virtual agents is achieved through a
combination of facial expressions and body language including
torso, shoulder, head, and leg movements.

2.3. Robots

Emotionally expressive animations have demonstrated effective-
ness by making the agents more relatable and lifelike. This encourages
the viewer to empathize with and respond to the virtual agent as if it
were human. Using animation techniques is useful in robotics and
often animating virtual agents is a first step to robotic motion
generation (Salem et al., 2010). Applying the methods of animation
to robotics is a challenging task because there is often less mobility,
fewer degrees-of-freedom, and slower movement. However, the
proximity and presence of a physical robot can have many benefits.
In this section, we describe related work in robotic communication
through gaze, gesture, and proxemics.

2.3.1. Gaze and facial expression
Gaze and facial expression play an important role in the commu-

nicative and interaction abilities of social robotics. Even simple glances
and postural shifts can encourage the flow of dialogue (Sidner et al.,
2004; Cassell et al., 2001). It has also been shown that people accept
robots as proactive communicative agents and respond to a robot's
gaze and nods in the same manner as they respond to other humans
(Muhl and Nagai, 2007; Sidner et al., 2006). The role of gaze and facial

M. Bretan et al. / Int. J. Human-Computer Studies 78 (2015) 1–162



expression plays an important role in social robotics as a method for
communicating emotion as well as eliciting emotion in people.
Sometimes emotional expressions are not explicitly designed into
the robot, but are rather associated with the robot as a result of its
behavior. In Mutlu et al. (2009) a Robovie R-2 robot adjusted its gaze to
focus on specific individuals, which elicited emotions of dislike in
people because they believed the robot demonstrated a preference or
was ignoring them.

In socially guided learning and shared focus experiences, robots
utilize posture and motion to intentionally indicate confusion and
attention or to acknowledge understanding. In these scenarios, the
robot must explicitly display emotion with the intent of eliciting a
response from the user. One example of this is Kismet (Breazeal, 2003),
which uses facial expression to express emotion to users. Delaunay
and Belpaeme (2012) describe a retro-projected “LightHead” robot and
argue a projection method allows for more versatility of emotional
display because it is not limited to a small number of facial features.
Other systems such as Infanoid (a humanoid social robot Kozima et al.,
2004) and Leonardo (a creature-like robot Lockerd and Breazeal, 2005)
exhibit emotion through arm and hand gestures, torso and neck
movements, in addition to varying facial expressions.

2.3.2. Gesture and faceless robots
Gesture is an important facet of human communication and

studies have shown that characteristics such as velocity, accelera-
tion, and location (front versus side-oriented) can influence how
people respond to different movement in robots (Riek et al., 2010;
Moon et al., 2013). Often gesture accompanies speech to help the
speaker to formulate ideas and provide additional information to
the observer. Salem et al. (2012) developed an integrated model of
speech-gesture production to address this concurrence. In the
experiments detailed later in this paper, however, we focus on
solely physical gesture without additional auditory cues.

There are several examples of robots which use gesture to
explicitly convey posture, motion, and gaze to convey and elicit
emotion. Many of these robots are faceless (or facially expression-
less) and must rely only on the physical movements of its body
and head to achieve this. RoCo is a robotic computer designed to
move in a subtly expressive manner and influence users' affective
states by altering its posture (Breazeal et al., 2007). AUR is a robotic
lamp which utilizes both human-controlled and autonomous
modules to generate expressive gestures and behaviors (Hoffman
and Breazeal, 2008).

Keepon, though not faceless (it has eyes and a nose), does not
have any motors in its face for it to be facially expressive. Keepon is
a creature-like robot designed to facilitate emotional expression
through its gaze and movements. It can convey emotions such as
pleasure and dislike through bobbing (up and down and back and
forth) and vibrating motions (Michalowski et al., 2007).

The NAO robot is a humanoid robot which also has a face, but
no facial motors. It adjusts its arms, legs, head, and torso to
arrange itself in emotionally semantic poses (Monceaux et al.,
2009). Similarly, both the DARwIN and Hubo robots have been
programmed to utilize head and arm positions to express mood
while dancing to music (Grunberg et al., 2012).

Shimon is a non-humanoid, marimba playing, robotic musician.
It has a head with a single eye and elongated neck. Often the
expressive nature of musical robots is generated through the use
of sound and various modes of musical interaction (Weinberg
et al., 2009, 2006). However, physical motion and behavior can
additionally be leveraged as a tool for creating an even more
expressive robot and engaging interactive experience. Shimon
uses posture, motion, and gaze to demonstrate emotions and inte-
rnal states such as attention and awareness, recognition of the

beat and tempo in music, and interest and curiosity (Bretan et al.,
2012).

2.3.3. Presence and proximity
Presence and proximity also influence the way people perceive

emotion. A physical presence (as opposed to virtual) can lead to
more “altruistic and persuasive” perceptions of the robot (Kidd,
2003). Having mechanisms in place which control the proximity of
the robot to the user is important because spatial features are used
to support certain social behaviors and can be used to trigger
levels of comfort and discomfort (Walters et al., 2009; Takayama
and Pantofaru, 2009; Mead et al., 2011). However, the robotic
platform we use in our experiments is stationary so we can
evaluate presence, but cannot test the effectiveness of a dynami-
cally changing distance between collaborators and how this may
affect emotion perception and recognition.

2.4. Architectures for algorithmically generating emotions

Before describing how emotion is synthesized it is important to
understand the relevant methods of classification. Some methods
utilize a set of basic discrete emotions (happiness, sadness, fear,
etc.) with more complex emotions being a combination of two or
more of these fundamentals (Devillers et al., 2005). Other methods
use a continuous dimensional model to classify emotion. These
dimensions include valence, arousal, and less commonly, domi-
nance, and stance (Mehrabian, 1996; Russell, 2009).

There is much debate regarding the fundamental issues of
emotion in humans. One argument against a theory of basic and
discrete emotions is that one would assume people exhibit similar
behaviors for individual emotions. Many studies involving facial
expressions have demonstrated that this is not the case (Carroll
and Russell, 1997; Fernández-Dols and Ruiz-Belda, 1997; Jack et al.,
2012). However, recently it has been shown that facial cues are not
good indicators for discriminating emotion and, instead, body cues
should be used (Aviezer et al., 2012).

Other arguments fueling the debate detail brain activity. There is
much evidence showing that discrete brain regions cannot be mapped
to discrete emotion categories (Lindquist et al., 2012). Though other
recent studies have shown basic emotion views are represented in
neural correlates. The mappings are not one-to-one, however, but
rather complex distributed networks (Vytal and Hamann, 2010;
Hamann, 2012). A newer theory describes dynamical discrete emo-
tions and attempts to address the variability and context-sensitivity of
emotions (Colombetti, 2009). This approach has been deemed viable
by researchers on both ends of the discrete versus continuous emotion
debate (Barrett et al., 2009).

Despite the fact that there is not yet universal agreement on
emotion classification and perception, there are specific attributes
an emotional intelligence architecture should entail. Picard (1995)
describes the constituents of expressive machines as having both
instinctual (spontaneous) and communicative (intentional) path-
ways. Ideally, an affect expression system for a robot should be
flexible enough to account for both of these pathways.

A well known system for an emotionally expressive robot is
Kismet's implementation described in Breazeal (2003). Breazeal
describes a system which enables facial expression transformation
on a continuous valence, arousal, and stance scale. Velásquez
(1997) describes the system, Cathexis, which is based on the six
primary emotions (anger, fear, disgust, sadness, happiness, and
surprise). An implementation of expressive dance motions in the
NAO robot is described in Xia et al. (2012) which uses automated
scheduling of discrete motion primitives driven by beats and
emotion in music. These systems connect the agent's motivations
to its affective behavior based on the fact that emotions arise out
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of one's internal goal (Frijda, 1995; Rolls, 2005). The motivations,
or “drives” as they are often referred, may result from a number of
factors including the agent's need for energy, survival, commu-
nication, or even dancing. The agent's desire to satiate these goals
influences its behaviors and thus emotions are born.

A more recent system designed for human–machine compa-
nions is presented by Traue et al. (2013). The system integrates the
use of both discrete and continuous emotions. External events are
subjected to an appraisal process and interpreted as discrete
emotional stimuli. These discrete stimuli are mapped to a con-
tinuous space and averaged. The resulting value is used to
manipulate the agent's behavior in response to the stimuli.

3. Experiments with emotional intelligence

The following sections describe experiments which evaluate
our efforts for developing emotional intelligence in our robot,
Shimi. The elements of emotional intelligence we investigate are
expression and perception. The first two experiments focus
primarily on Shimi's ability to express specific emotions using
both preprogrammed physical gestures and algorithmically gen-
erated gestures. The preprogrammed gestures were designed to
test whether it was possible for Shimi to convey discrete emotions
when given what we found to be the optimal poses and motions
representing each affect. Then, using what we learned from the
hand designed gestures, we developed a system for autonomous
generation of emotionally expressive movements.

In our second experiment, we measure the correlations of the
parameters controlling this algorithm with particular emotions.
Finally, we integrate our expression module with a perception
module in order to a evaluate the system with a user experiment
involving an interaction with Shimi. We attempt to demonstrate
the effectiveness of the aforementioned physical behaviors and
perception abilities through increased partner engagement and
improved user assessment of Shimi.

4. Design and evaluation of emotionally expressive gestures
for shimi

Shimi (see Fig. 1) is a facially expressionless, creature-like robot
that was designed to be an interactive speaker dock (Hoffman,
2012).1 It has two speakers on either side of its head, and is
powered by a mobile phone running Android OS. Shimi has five
DoFs with three in its head, one on the hand that holds the phone,
and one on its foot for tapping. The robot itself has no sensors.
Instead, the mobile phone's sensors (microphone and camera) are
used, and an application running on the Android device sends
movement commands to an arduino which controls each DoF.
Shimi utilizes the phone's functionalities to become “intelligent”
allowing it to dance to music, understand speech, and follow a
person so that he or she is always in the stereo field. For the
following experiments, we use the Shimi robot as a platform for
creating and exploring physical expression of emotion without
musical accompaniment.

There are several similarities among Shimi, Keepon, Hubo, and
DARwIN (specifically Grunberg's et al. work with humanoid
dancing robots), most notably the fact that they are robots which
respond to music with physical gestures. Unlike the Hubo and
DARwIN robots, the Shimi platform allows us to experiment with a
non-humanoid design and focus on physical movement and
behavior rather than human posture. The work involving motion
and emotive expression with Keepon has provided an excellent

starting point into examining how a simple mechanical system can
be expressive with movement. Here, we expand on the ideas
introduced through Keepon and attempt to achieve emotional
expression of more complex and discrete emotions through Shimi.
Additionally, unlike Keepon, Shimi's motions involving gaze are
more ambiguous because it does not have a face.

4.1. Expressing emotion

Static postures and dynamic gestures were designed to repre-
sent each of the six fundamental emotions: happiness, sadness,
anger, fear, surprise, and disgust (see Fig. 2). We chose these
emotions, not because we want a discrete emotional system, but
rather these emotions can easily be mapped to coordinates on the
core affect plane. This also allows us to use more commonly
understood emotion terms (opposed to valence, arousal, and
stance) when working with participants in a user study. Similarly
to the labeling study performed by Breazeal (2003) for robotic
facial expressions, we use continuous parameters to algorithmi-
cally generate emotional behaviors but use a discrete labeling
system. The premise is that if we can make robust representations
of specific coordinates on the continuous core affect plane, we can
then build a model that allows for smooth and continuous
regression from coordinate to coordinate. Ekman's six emotions
were chosen because of their straightforward and comprehensible

Fig. 1. Shimi is a faceless, five DoF, smart phone powered, robotic speaker dock
which uses musical intelligence to engage users and dance to music. Shimi has five
DoFs: three in its head, one on the hand that holds the phone, and one on its foot
for tapping.

Fig. 2. Static poses representing six basic emotions.

1 Shimi is referred to as “Travis” in this paper.

M. Bretan et al. / Int. J. Human-Computer Studies 78 (2015) 1–164



nature as well as their coordinates being ideally located on the
core affect plane for regression.

The postures and gestures were designed to be the quintessential
portrayals of each emotion and exaggerated to exemplify the essence
of each emotion. Both the postures and gestures were hand-designed
using an iterative process with informal user interviews for refine-
ment. We based our dynamic gestures on the findings of Inderbitzin
et al. (2011) such that the robot's posture is strongly correlated to
valence and the velocities of the movements are correlated with
arousal levels. The process entailed designing a set of emotional
gestures, performing a small labeling pilot study for evaluation,
collecting feedback, and repeating the process until a stable ground
truth of gestures had been established. The labeling pilot ensured that
there was agreement with regards to the emotions Shimi was
expressing with each gesture and pose. This ensured that Shimi
was expressing the emotions we thought In the end, each gesture has
a duration of 1–4 s.

Though culture can definitely influence how a person inter-
prets emotive facial expressions (Jack et al., 2012), speech accom-
panying gestures (Kita, 2009), and, to a lesser extent, stand-alone
emotive body postures (Kleinsmith et al., 2006), we did not con-
trol for this in our design process. However, considering the
diversity of those involved in the pilot studies and design process
we can safely assume that these emotional gestures cross cultural
boundary lines to at least some extent.

4.2. Experiment

We designed an experiment to evaluate the emotionally expre-
ssive nature of the postures and dynamic gestures. We make
several hypotheses based on our own and others' previous work.
Based on the agreement found in our labeling pilot study, we
believe that the participants will be able to classify Shimi's
expressions with the appropriate emotion.

H1 (Overall Classification)—Participants will perform better than
chance for identifying the emotion each posture and gesture
represents

Though static facial expressions are often sufficient for convey-
ing emotion, a faceless robotic platform must rely on physical
movements and behaviors to effectively convey emotion. Inder-
bitzin et al. (2011) show that both posture and movement are
equally important for representing valence and arousal values.
Therefore, we believe there will be perceptual differences between
pose and motion that are relevant to emotional expression and
make these hypotheses:

H2 (Movement Bias, Classification)—Participants will perform
better at classifying the dynamic gestures compared to the
postures.

H3 (Movement Bias, Valence)—Participants will more often label
the dynamic gesture with the appropriate valence of the
emotion portrayed compared to the postures.

H4 (Movement Bias, Arousal)—Participants will more often label
the dynamic gesture with the appropriate arousal of the
emotion portrayed compared to the postures.

H5 (Movement Bias, Approval)—Participants will rate the dynamic
gestures more positively than the postures at portraying the
emotions.

As described earlier, proximity and presence can influence a
person's perception of a robot. We are able to evaluate the affect of
presence as well in these studies. Specifically, we compare the
effect of Shimi's different affect expression techniques on human
perception of emotion with four conditions: viewing of posture

images (PI), viewing of postures in person (PP), viewing of dyna-
mic gesture videos (DV), and viewing of dynamic gestures in
person (DP). In addition to investigating the perceptual differences
between pose and motion, the experiment was designed to evalu-
ate an additional element relevant to HRI: peoples' responses
between viewing a collocated (physically embodied) robot and
viewing a video or image of a robot.

Evidence for increased social influence and engagement during
the collocated scenario has been demonstrated in children (Kose-
Bagci et al., 2009) and adults (Kidd and Breazeal, 2004; Bainbridge
et al., 2008), yet another study by Powers et al. (2007) showed that
a collocated robot does not always yield better results. These
studies involved interactions between the participants and the
robot (either virtually or in person) to examine the benefits and
social influences of each scenario. In this experiment, participants
only view the robot and do not interact with or socially engage it.
This allows us to test purely the expressive nature of the robot
under the different conditions. We make two more hypotheses
based on the findings of these previous studies.

H6 (Co-presence Bias, Posture Classification)—Participants will
rate the postures more accurately when they witness them
in person rather than as an image.

H7 (Co-presence Bias, Dynamic Gesture Classification)—Partici-
pants will rate the dynamic gestures more accurately when
they witness them in person rather than as a video

4.2.1. Procedure
The experiment is a 4�1 between subjects design with each

participant randomly assigned to one of four testing conditions:
(1) viewing of images of the robot's poses (2) viewing of the
robot's poses in person (3) viewing of HD videos of the robot's
dynamic gestures and (4) viewing of the robot's dynamic gestures
in person. Each participant sat at a table either with a computer
screen or with Shimi where the proctor introduced the robot and
described the purpose of the study. They were told that they
would be shown six static postures or animated gestures (in
random order) and be asked to classify each as one of the six
fundamental emotions. There was no time limit and they were
able to view each gestures as many times as they wished. In
addition to classification, they were asked to label the postures
and animations with a valence on a 7-point discrete visual analog
scale (DVAS) where 7 was highly positive, 1 was highly negative,
and 4 was neutral. They did this for arousal as well. Finally, they
were asked to rate the posture/gesture on a 7-point Likert scale
(strongly disagree to strongly agree) describing how well they
thought each represented the emotion we had intended for it to
portray. The mean of three questions were used for the subjective
feelings Likert analysis (Cronbach's alpha¼ .83). The questions
were “This gesture represents [this particular emotion]”, “Shimi
shows characteristics of [this particular emotion] in this gesture”,
and “It is easy to understand the emotion Shimi is conveying.”

4.2.2. Results
There were 48 undergraduate and graduate Georgia Tech

students who participated in the study (30 male and of American,
Indian, and Chinese origin). A one-way between subjects analysis
of variance (ANOVA) was conducted to compare the effect of
different affect expression techniques on affect classification
accuracy on the four testing conditions: PI, PP, DV, and DP. There
was a significant effect of affective expression techniques on the
classification accuracy at the po :001 level for the four conditions
[F(3, 44)¼8.36, po :001]. Post hoc comparisons using the Tukey
HSD test indicated that the mean score for the PI (M¼ .45, SD¼ .25)
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condition was significantly different than the DV (M¼ .68, SD¼ .18)
and DP (M¼ .81, SD¼ .21) conditions. The PP (M¼ .47, SD¼ .13)
condition was significantly different than the DV and DP condi-
tions. However, the PI condition did not significantly differ from
the PP condition and the DV condition did not significantly differ
from the DP condition.

These results suggest that our dynamic gestures are better at
conveying the six fundamental emotions than the static postures.
Specifically, viewing Shimi's dynamic gestures either in person or
on video produces better perceptual representations than posture
in general does. Contradictory to our hypotheses (H6 and H7),
however, the differences between on screen and in person view-
ings are insignificant. Fig. 3 shows the summarized ANOVA results
for the identification accuracies. As shown in Table 1, participants
were on average able to accurately identify the emotion of a
posture image 46% of the time, 47% of the time for viewings of
postures in person, 66% of the time for videos of the gestures, and
80% of the time for in person viewings of the gestures. Table 2
shows the forced choice percentage rates for each emotion. A
Pearson's Chi-squared goodness of fit test was performed for each
emotion. The results indicate that the frequency distributions for
each emotion differ significantly at the po :001 level to a theore-
tical distribution where all six emotions are considered equally
likely to occur. All emotions performed better than the likelihood
of chance (16.7%) other than the identification of the fear posture
which performed at chance. However, the Chi-square results
suggest that, though the identification of the fear posture was
equal to chance, the overall distribution for the fear posture still
significantly differed from a random distribution indicating the
posture did influence responses in some manner.

A one-way ANOVA was also conducted for each emotion for the
subjective Likert ratings for the effective portrayal for each expression
technique. Again, when the results suggested significance at the
po :05 level for the four conditions, a Tukey HSD post hoc comparison
was done to compare each of the conditions to one another. There
were significant findings for the emotions of Disgust, Anger, Fear, and
Surprise. We also report the mean DVAS values of the valence and
arousal ratings. Table 1 shows the average results for the DVAS values
and the Likert ratings and whether there are any statistical differences
between two or more of the conditions. Participants also tended to
label the animated gestures with valence and arousal values closer to
the true values for each emotion. Negative emotions (sadness, anger,

fear, and disgust) have a valence less than four, neutral emotions
(surprise) have a value close to four, and positive emotions (happiness)
have a valence value greater than four. Emotions with positive arousals
(fear, surprise, disgust, anger, and happiness) have ratings greater than
four and emotions with negative arousals (sadness) less than four.

Fig. 4 shows the ANOVA for participants' ratings of how each
posture and dynamic gesture represented the particular emotion.
For these effective portrayal results there were significant differ-
ences between conditions were found for the emotions of fear,
surprise, anger, and disgust. Though the DP condition was rated
significantly higher than both the PI and PP conditions for all of
these emotions, the DV condition was rated significantly higher

Fig. 3. Mean overall classification accuracies with red standard error bars and black
lines indicating significant differences at the po :05 level. The y-axis is the accuracy
value for each of the different viewing conditions on the x-axis including viewing of
postures as images (PI), postures in person (PP), dynamic gestures as videos (DV),
and dynamic gestures in person (DP). (For interpretation of the references to color
in this figure caption, the reader is referred to the web version of this article.)

Table 1
Average Results. The table shows where significant findings were found from the
ANOVA results for the classification accuracy and Likert opinion ratings. We also
report the average DVAS values of the arousal and valence ratings for the different
emotions.

Task Emotion PI PP DV DP P-Value η2

Classification .46 .47 .68 .81 nnn .69
Opinion Happy 4.92 5.42 5.33 5.83

Sad 6.59 6.25 6.50 6.67
Disgust 4.25 3.42 4.75 5.50 nnn .58
Anger 3.75 3.92 5.25 6.00 nnn .66
Fear 2.83 2.75 3.58 4.42 nn .36
Surprise 4.59 4.33 5.00 5.58 nn .32

Valence Happy 5.67 5.25 5.67 6.3 – –

Sad 1.67 1.67 2.00 1.75 – –

Disgust 3.42 4.00 3.33 3.00 – –

Anger 2.92 3.08 2.08 1.83 – –

Fear 4.56 4.25 3.25 3.42 – –

Surprise 4.92 5.17 4.00 3.75 – –

Arousal Happy 5.67 4.75 5.25 5.75 – –

Sad 3.33 3.08 1.92 1.58 – –

Disgust 3.75 3.83 5.08 4.75 – –

Anger 3.67 4.00 6.17 6.33 – –

Fear 3.42 4.25 5.41 5.00 – –

Surprise 4.67 5.00 5.33 5.67 – –

Table 2
Identification confusion matrices.

H Sa D A F Su %Correct
(a) Viewing of posture images
Happy 41.7 25 33.3 41.7
Sad 91.7 8.3 91.7
Disgust 8.3 41.7 25 25 8.3 41.7
Anger 16.7 33.3 50 50
Fear 41.7 8.3 8.3 16.7 25 16.7
Surprise 16.7 16.7 41.7 41.7

(b) Viewing of postures in person
Happy 41.7 8.3 41.7 8.3 41.7
Sad 100 100
Disgust 58.3 16.7 25 58.3
Anger 33.3 8.3 33.3 25 33.3
Fear 25 16.7 8.3 16.7 33.3 16.7
Surprise 33.3 33.3 33.3 33.3

(c) Viewing of dynamic gesture videos
Happy 91.7 8.3 91.7
Sad 100 100
Disgust 58.3 8.3 16.7 16.7 58.3
Anger 75 25 75
Fear 8.3 16.7 8.3 25 41.7 25
Surprise 25 8.3 25 41.7 41.7

(d) Viewing of dynamic gestures in person
Happy 100 100
Sad 100 100
Disgust 75 8.3 16.7 75
Anger 91.7 8.3 91.7
Fear 16.7 50 33.3 50
Surprise 41.7 58.3 58.3
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than the PI and PP conditions for anger and significantly higher
than only the PP condition for disgust. This suggests that, though
the classification accuracies were not influenced by the differences
between on screen and in person viewings, the subjective ratings
were influenced by both the differences between static posture
and dynamic gesture and between on screen and in person
viewings (for at least some of the emotions).

4.2.3. Discussion
The findings suggest Shimi was able to convey emotion through

both its poses and gestures, though the gestures performed much
better. All of our hypotheses were supported by the results other than
H6 and H7. There was significant confusion with fear, happiness, and
surprise in the posture identification. This is not surprising because
the human posture of fear, surprise, and happiness differ most
significantly in arm position (De Silva and Bianchi-Berthouze, 2004).
Shimi has no arms to imitate these differences and can rely on only
the subtle head and neck differences.

Though there were no statistically significant differences between
the viewings of Shimi's postures as images and in person, there were

differences in Likert ratings between the video and in person viewings
of Shimi's gestures. For almost all emotions the in person viewing
results had higher averages for identification accuracy, more similar
DVAS ratings for valence and arousal to the true values for each
emotion, and higher Likert ratings for how well each emotion was
represented by the gesture. Additionally, differences did exist between
the classification accuracies for the DV and DP conditions. Though the
differences were small and not statistically convincing (p-value¼ .08
for overall identification accuracy) the tendencies suggest that, with a
larger subject pool, more statistically significant findings may have
been found. A post hoc power analysis revealed that on the basis of
the mean, between-groups comparison effect size observed between
the DP and DV conditions (d¼ .67, N¼24), an n of approximately 95
would be needed to obtain statistical power of po :05 at the .90 level.
We found no previous studies which solely evaluate the ability of a
robot to convey semantic information under collocated and virtual
conditions. However, according to studies which evaluate perceived
quality of speech and video in multimedia conferencing applications
there is no perceptible loss of information (even when the signals are
degraded by current video or audio conferencing technology) (Watson
and Sasse, 1998; Anderson et al., 2000; Claypool and Tanner, 1999).

Fig. 4. Mean overall Likert rating results of how well each posture or dynamic gesture represented the particular emotion for each viewing condition with red standard error
bars and black lines indicating significant differences at the po :05 level. ANOVA results for participants' ratings of how well each static posture or dynamic gesture
represented the particular emotion on a 7-Point Likert scale where 1 is very poor and 7 is very well. The y-axis is the 7-Point Likert rating where 1 is very poorly and 7 is very
well. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this article.)
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However, these studies do not evaluate the perception of individual's
affective states when communicating through multimedia conferen-
cing technology. Additionally, Coulson (2004) reports that viewpoint
can influence the perception of emotion in static pose. This may be a
possible reason for the differences between perception of video and in
person viewings. However, there was no statistical difference between
perception of emotion between in person viewings of the static poses
and the images. We believe this is an avenue of research worth more
investigation.

Fear had the lowest identification accuracies for both the
postures and animations. This is indeed partly due to the fact that
humans can use shoulder and arm position cues to determine
whether somebody is afraid or not. However, fear also comes in
different forms, and we did not specify what type of fear Shimi
was attempting to convey. For example, we believe our animation
much better represents a startled type of fear which is triggered by
some sudden surprise or disbelief. It does not represent the type of
psychological fear experienced when anxiously anticipating some
impending event. Both of these factors may have contributed to
the lower classification accuracies of fear.

Overall, the identification accuracies suggest that there are
certain characteristics of motion and pose which people associate
with particular emotions. This is in contrast to the quantity but not
quality view which conforms to the idea that body language is
merely a reflection of the intensity of the emotion being experi-
enced and not the actual emotion. The findings support our
hypothesis that motion can be used to successfully convey emo-
tion when facial expression, sound, numerous DoFs, and humanoid
design are not available.

5. A system for generating emotional behaviors

The previous section demonstrated that it is possible for Shimi
to accurately convey both a discrete set of emotions and levels of
valence and arousal. In this section, we attempt to establish a finite
set of parameters and mathematical functions defining pose and
motion, which when fitted with the appropriate numerical values,
will create movements that correlate with specific emotions.
Hardcoding short gestures as was done in the first experiment
can be very useful in determining how best to apply the traits of
pose and motion to represent each emotion. However, this is time
consuming and limits the robot to portraying only a finite number
of emotions. Additionally, people can experience and express
different levels of any particular emotion. For example, the list of
words to describe varying levels of happiness (joyous, content,
exuberant, satisfied, ecstatic, pleased, jubilant, overjoyed, etc.) is
immense yet each word is unique. If a robot is to be truly
expressive and exhibit a rich set of emotions it must have a
system which allows for it. Breazeal (2003) describes transitions
between facial expressions on a continuous scale which allows
Kismet to express a wide range of emotion with varying degrees of
intensities. We were influenced by this system and have expanded
on its methods to create a system for expressive emotional
behaviors (using posture and motion) on a continuous scale, while
still flexible enough to generate the discrete emotive gestures
designed in the previous section.

5.1. Control variables

As described earlier, non-verbal behavior such as gaze and
proxemics can be used to convey information or influence the
behavior of collaborators (Hüttenrauch et al., 2006; Kendon, 1990).
Architectures have been developed for synthetically generating
these communicative movements (Salem et al., 2012). In this

section, we describe our method for algorithmically generating
emotive behaviors.

In order to computationally define what it means for something to
behave in a manner representative of a particular emotion, we must
first understand the variables which constitute an emotional behavior.
Head orientation, position, and body postures have been observed as
having an effect on facial expressions presented during feelings of
specific emotions (Hess et al., 2007; Aviezer et al., 2008; Krumhuber
et al., 2007). We must design a system which can sufficiently convey
varied levels of emotion using only the DoFs available to Shimi.
Research in facial expression and limb position is not as relevant for
us. Instead, we must consider how something moves such smooth
versus jerky motions.

Fig. 5 presents a summary provided by Walbott (1998) of
observations from Darwin (1916). The relationships between
posture and the movements inherent to specific emotions are
described. Though these descriptions may no longer be considered
the quintessential physical human behaviors exhibited for each
emotion (as evidence shows behaviors differ across cultures and
even genders), we can at least examine the descriptions to
determine which characteristics (such as velocity, head position,
etc.) can be used to control motion. A model can then be built to
generate different types of behavior based on mappings of these
particular characteristics to different emotions or coordinates on
the core affect plane. We generalize Darwin's observations as a set
of relevant features for differentiating the behaviors.

1. Posture Height—representative of the relative distance between
the height of a person's chest and height of the waist. In
essence, how erect or crouched a person's torso is.

2. Shoulder Height—representative of the relative distance
between the waist and the shoulders.

3. Arm Position—the location of the arms in respect to the rest of
the body (“close to sides” vs “over the head”).

4. Gaze (Head Position)—the direction and angle at which the head
is positioned is indicative of where somebody's attention is and
how welcoming or rejecting somebody is.

5. Body Activation—the type of motion the body and arms exhibit
(slow vs fast) including
(a) Up and Down Activation
(b) Left and Right Activation
(c) Rotational Activation—twisting of the body and arms

6. Head Activation—the type of motion the head exhibits is
classified into 2 parts
(a) Positive Head Activation—head nodding up and down

Fig. 5. A table presented by Walbott (1998) describing observations from Darwin
(1916).
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(b) Negative Head Activation—head shaking left and right
7. Volatility or Periodicity—a function of variation in the move-

ments in terms of the positions a movement oscillates between
and the rate at which this is done. A highly periodic movement
would indicate a motion with a low volatility. (This idea is
supported by Linda A. Camras and Michel (1993) who show
anger to be accompanied by more spasmodic movements
compared to sadness)

8. Exaggeration—the range of motion exhibited by each DoF
(smaller vibrations vs massive convulsions)

Though these parameters were derived from Darwin's observa-
tions of humans, we believe that all, or a subset of these parameters,
can be useful for designing expressive movement in non-humanoid
robots as well. On a robot the posture, shoulder, arm, and gaze
parameters can be considered positional values for the DoFs which
correspond to the relevant body parts. The activation parameters
describe how the DoF positions change in time in relation to their
“center values” described by these positional values. Volatility and
exaggeration are modifying parameters which can be used to manip-
ulate both the positional and activation values in time. In the following
sections, we describe the system and control parameters in more
detail. For Shimi, we use only the parameters relevant to its design

and DoFs (see Fig. 8) which include posture height, gaze, head
activation, volatility, and exaggeration.

5.2. Design

Our system for generating emotional behaviors consists of three
main sections: Emotion Tagging, Interpretation, and Expression.

1. Emotion Tagging The system takes in some sensor data (such as
sound or language) and represents it as a particular emotion.
This may be valence and arousal values or an emotional word
such as “anger” or “happy”.

2. Interpretation During the interpretation phase, the systemmaps
the emotional tags to each of the control parameters.

3. Expression Emotive behaviors based on the control parameters
are generated using motion and body language.

An outline of this architecture is shown in Fig. 6. We begin by
describing the expression section of the system and in subsequent
sections discuss the tagging and interpretation phases.

The expression portion of the system is made up of two essential
parts: a growth and decay function and motion primitives. When the
expression system receives a set of control parameters it attempts to

Fig. 6. . The system for generating emotional behaviors consists of three main phases: emotion tagging or identification, interpretation of how best to characterize the
emotion using the predefined parameters, and synthesis for effectively expressing the emotion.

Fig. 7. Example decay rates where y¼0 is the homeostatic state and y¼1 is the new emotional state. (a) shows an immediate transition and exponential decay (b) shows a
growth and decay.
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move based on those parameters. The growth and decay function
allows robots to fluidly transition between emotional states. Breazeal
(2003) describes a homeostatic regime in which Kismet “wants” to
maintain a certain intensity level. Here, a homeostatic state repre-
sented by particular control parameter values is implemented. This
state describes the emotional behavior that the robot “wants” to be at.
If a robot is to be inherently happy it's homeostatic values would be
representative of a happy behavior. If it is to be inherently sad then
these values would be representative of a sad behavior. In our
implementation we gave Shimi a homeostatic nature of calm and
content.

5.2.1. Growth and decay function
The growth and decay function describes the rate at which the

robot “grows” to a new behavior (defined by the control para-
meters) and “decays” back to its homeostatic state. This is crucial
based on the assumption that it is not natural for a person in a
joyous and excited state to immediately change to a calm and still
state unless triggered by some external force. The decay function
allows for the robot to naturally make transitions. Multiple growth
and decay functions can be used depending on the situation. For
example, Fig. 7a represents an immediate transition from the
robot's current state to the new emotional state with an exponen-
tial decline back to the homeostatic state. This function is useful
when abrupt physical action is important such as for expressing
surprise or startled fear. Fig. 7b might be used to express an
emotion such as disappointment where it takes a moment for the
emotion to “sink in” and peak disappointment to be reached. Then
it slowly decays back to the homeostatic state. The growth and
decay function can be given by

f ðPiÞ ¼ decayðH; S; T ; ti�t0Þ ð1Þ
where P is the set of n control parameters at current time i such
that P ¼ ½pi0; pi1;…; pin�, ti is the current time, t0 is the initial time of
activation, T is the total time necessary to decay back to the
homeostatic state, H is the set of control parameters for the
homeostatic state such that H¼ ½h0;h1;…;hn�, and S is the set of
received control parameters from the interpretation phase such
that S¼ ½s0; s1;…; sn�.

The total time, T, is a value which must be determined by the
situation. For example, in terms of motion the human expression
of laughter can be thought of as a series of contiguous chuckles.
The physical traits between a discrete segment of laughter and a
chuckle are similar, but where laughter is repetitive and lengthy a

chuckle is fleeting. The same notion applies to the temporal length
of growth and decay. In our current implementation we have a
fixed T for different emotions. For future work an algorithmically
determined T can be determined by a function of the relevant
social display norms.

5.2.2. Beat synchronized update
The expression system is driven by a timer which updates at a

given interval, α where α¼ tiþ1�ti. The timer triggers an update
of Eq. (1) every α seconds. This interval can be adjusted depending
on how frequently the robot should update. Obviously, for smaller
α values the transitions between emotional states will more
closely follow the contours of the decay function. A larger α will
ease computation expense, but transitions may not be as smooth.

Shimi, is first and foremost a musical robot (see Hoffman, 2012)
and the use of an α is a consequence of this fact. In music and dance
the concept of a “beat” is essential and signifies the perceptible pulse
exhibited by the rhythm. When Shimi is dancing to music it is
important for it to align its motions with this pulse. If Shimi were to
use this emotion expression system for dance its αwould be set to the
temporal interval which signifies the length of a beat.

5.2.3. Motion primitives
In the system the robot's movements can be defined by a number

of motion primitives. The motion primitives we have defined for Shimi
are head nod (up and down) and head shake (left and right). Fig. 8
shows the range of motion for each of Shimi's DoFs. The motion
primitive for the head nod involves the head up/down and neck up/
down DoFs. Themotion primitive for the head shake involves the head
left/right DoF. How the motion primitive is performed is defined by a
subset of the control parameters such that:

Pnod ¼ ½pposture; pgaze; pposHeadActivation;
pvolatility; pexaggeration� ð2Þ

Pshake ¼ ½pgaze; pnegHeadActivation; pvolatility;
pexaggeration� ð3Þ

These parameters control the rate at which the primitive is performed,
the maximum range the motion exhibits, and the center location of
the motion.

The notion of volatility is to introduce variation into a repetitive
series. We define volatility as a function of variation which
manipulates a value based on a Gaussian distribution about pη
where pη is some control parameter. The Gaussian probability
density function is the statistical distribution:

f ðx;μ;σÞ ¼ 1
σ

ffiffi½p �2πe
�ðx�μÞ2=2σ2 ð4Þ

where μ¼mean, and σ2 ¼ variance. An increase in the value
pvolatility results in an increase of variance. The volatility manipula-
tion function is thus defined as:

volatilityðpηÞ ¼ f ðx; pη; pvolatilityÞ ð5Þ

where x is a random number. The rate, range, and location of the
motion primitives are defined as functions of the remaining
original control parameters and the volatility manipulated control
parameters.

rate¼ gðvolatilityðpheadActivationÞÞ ð6Þ

range¼ gðvolatilityðpexaggerationÞÞ ð7Þ

locationnod ¼ gðpgaze; ppostureÞ ð8Þ

locationshake ¼ gðpgazeÞ ð9Þ

Fig. 8. Shimi's five degrees of freedoms. For our experiment we use the two head
DoFs and the neck DoF.
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where rate is always a whole number multiple of α in order to keep
the motions synchronized to the beats. Fig. 9 gives an overview of the
architecture for the expression portion of the system.

5.3. Evaluating control parameters

An experiment was conducted to measure the significance of
our control parameters as emotional contributors by determining
the correlation between each parameter and participants' percep-
tions of emotions. For the experiment the system for generating
emotional expression was implemented on Shimi.

5.3.1. Procedure
Ten participants (7 male) were asked to watch six 45 second

performances of Shimi generating motions using the system. For
each performance Shimi had five emotional state updates with
each having random values for the control parameters (values
were randomly generated using Java's Random.nextFloat() func-
tion). The real time values (the decay function outputs) for each
parameter were recorded. The α update rate for the decay function
was 200 ms, thus, parameter values were recorded every 200 ms).

During each performance participants were tasked with rating the
level of a particular emotion in each performance by moving a slider
up and down on a MIDI control board. Slider values were also
recorded every 200 ms. Participants were told that a slider in its
lowest position indicated the absence of the emotion and anything
higher indicated the emotion was present with the level describing
how well the emotion was being represented. Before each perfor-
mance they were told which particular emotion they would be
evaluating so that they coded for only one emotion for each
performance. This meant each participant moved the slider a total of
six times rating each of the six fundamental emotions. Because
parameter values were generated randomly there were no identical
performances. A message was sent over a network in order to
synchronize the recording of Shimi's parameter values and the
participant slider values. There were a total of ten participants
(different from the first experiment).

5.3.2. Hypotheses
We made several hypotheses based on Darwin's observations

and our empirical findings regarding dynamic affective expression
design from the previous experiment:

H8 (Posture vs Valence)—Posture height will be positively corre-
lated with positive valence emotions and negatively corre-
lated with negative valence emotions

H9 (Head Nodding vs Arousal and Valence)—Positive head acti-
vation (increased nodding rate) will be positively correlated
with emotions of positive arousal and positive valence
(happiness and surprise) and negatively correlated for the
other emotions

H10 (Head Shaking vs Arousal and Valence)—Negative head acti-
vation (increased shaking rate) will be positively correlated
with emotions of positive arousal and negative valence
(anger, fear, and disgust) and negatively correlated for the
other emotions

H11 (Gaze vs Arousal and Valence )—Gaze will be positively
correlated with emotions of positive valence and positive
arousal (happiness and surprise) and negatively correlated
for other emotions

H12 (Volatility vs Emotions with “Purposeless Movements”)—Volati-
lity will be positively correlated with emotions which Darwin
describes as being expressed with “purposeless movements”
(happiness and anger)

H13 (Exaggeration vs Arousal)—Exaggeration will be positively
correlated with emotions which have a positive arousal level
(anger, happiness, disgust, surprise, fear) and negatively
correlated with emotions which have a negative arousal level
(sadness)

5.3.3. Results and discussion
We evaluated the results by calculating the correlation coefficients

between the slider values and control parameters for each of the
emotions. The results are summarized in Fig. 10. The p-values for the
majority of the coefficientswere below .05 suggesting the null hypothesis

Fig. 9. The initial control parameters are received by the growth and decay function. This function allows for different types of transitions between emotional states (such as slow and
smooth vs abrupt) and outputs new parameters as a function of time and the homeostatic state. The homeostatic state represents a set of constant parameters which the robot will
always come back to as determined by the decay function. The function is run at intervals determined by an arbitrary timer in the beat synchronized update. This allows a dancing
robot to align its movements with the perceived beat of music. Finally, motion primitives are performed in a manner determined by the outputs of the decay function.
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can be rejected. The complete correlation values are shown in Table 3.
The coefficients with p4 :05 are shown in red.

The results largely supported our hypotheses and provide
additional evidence that specific characteristics of body language
are indicative of specific emotions. However, with only 10 parti-
cipants (and no controls for culture) we are only cautiously
optimistic that our parameters demonstrated relevance to expres-
sing emotion. Specifically, posture height and gaze demonstrated
direct correlations with an emotion's valence. Fear, however, was
the one exception and showed weak positive correlations for both
of these parameters despite its negative valence. Head activation
(nodding and shaking) demonstrated direct correlations with an
emotion's valence and arousal. Though, again, fear demonstrated a
negative correlation with head shaking which was contradictory to
our hypothesis. Volatility, or the amount of variation exhibited in a
behavior, showed positive correlations with anger and disgust and
negative correlations with the remaining four emotions. Finally,
exaggeration, or the range of motion exhibited by a movement,
showed positive correlations with all of the emotions. These

results can only offer broad ideas concerning the relationship
between the control parameters and the emotions. There may be
stronger or weaker correlations for each individual parameter
depending on the values of the other parameters. Additional
studies and analyses can be helpful in describing the covariance
between multiple control parameters and the emotion ratings.

6. Evaluating the expressive generative system using an
interactive experiment

Both human–human (Nagai and Rohlfing, 2009) and human–
robot (Mutlu et al., 2009) studies have shown social interactions to
be more engaging when actors demonstrate a certain degree of
physical responsiveness to the actions of one another. Mutlu et al.
demonstrate that even a response as simple as gaze can influence
how fondly a robot is perceived. Such feedback responses are
helpful in reading others' goals, intentions, and levels of under-
standing. In this section we evaluate the efficacy of our expressive

Fig. 10. Correlation coefficients for the parameter control variables and each of the six fundamental emotions. Blue bars indicate results supporting our hypotheses and red
bars indicate results contrary to our hypotheses. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this article.)
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generative system's ability to provide coherent and appropriate
physical responses during a human–robot interaction.

6.1. Experiment

The experiment evaluates an implementation of the entire
emotion intelligence system on Shimi through a user study. In
the implementation the user speaks a phrase that is recorded by
the mobile phone and then sent to Google's servers for speech
recognition analysis. The resulting text representation of the
speech is then evaluated for its emotional content using six
parameters (representing levels for happiness, sadness, anger,
disgust, fear, and surprise). In order to find the weights of each
parameter an averaged perceptron classifier was trained using
emotionally tagged datasets of news headlines (Strapparava and
Mihalcea, 2008), children's stories, Alm (2005), and an original
corpus acquired from social media sources including Facebook,
Tumblr, and Twitter. It is assumed that Google returns an accurate
representation of what was spoken (though this is not always the
case). When the text is classified Shimi alters its behavior from a
calm, breathing state to something more representative of the
emotion it has detected based on the control parameter values
representing happiness, sadness, anger, disgust, fear, or surprise. In
summary, the participant speaks to the robot and the robot
responds with emotive expressive physical behaviors.

Contingency plays an important role in engagement and inter-
active scenarios (Fischer et al., 2013). The level of engagement and
enjoyment can be quantified by measuring the time a person
spends on a task or interaction (Powers et al., 2007). Therefore we
make the following hypotheses:

H14 (Time Spent Interacting)—Participants whose emotions are
acknowledged using the emotional intelligence system will
enjoy the interaction experience more so than those whose
emotions were randomly acknowledged. This will result in a
longer time spent interacting with Shimi.

H15 (Number of Phrases Spoken)—Participants whose emotions are
acknowledged using the emotional intelligence systemwill enjoy
the interaction experience more so than those whose emotions
were randomly acknowledged. This will result in an increased
number phrases spoken during the interaction.

6.1.1. Experimental design
The experiment was a between groups design. There were two

groups of participants with 22 total participants (15 male) made
up of undergraduate and graduate students (different from the
previous experiments). Twelve students received course credit for
participation. Each group had 11 members. In the first group,
participants interacted with a version of Shimi that utilized the
emotional intelligence system. In the other group, Shimi did not
use any recognition or perception abilities and instead randomly
chose an emotive behavior to respond with. Each participant was
told that Shimi could recognize phrases as being one of the six

basic emotions. They were then asked to interact with Shimi using
speech twice. The first time, each participant read from a script
following a narrative in which they read a phrase, Shimi
responded, read another phrase, Shimi responded, and so on until
the script was finished. In the second interaction, participants
were asked to follow the same turn taking narrative, but instead of
reading from a script they were asked to freely speak for as long as
they like given only the fact that Shimi will respond to emotional
content in language.

During the free speak interaction we kept track of the number
of phrases spoken and the length of time of the interaction as
objective measures. After completing surveys for both parts of the
study each participate was interviewed by the proctor and asked
to discuss their experience with Shimi.

6.1.2. Evaluation and results
The data was analyzed using a one-way ANOVA where sig-

nificance was found at the po :05 level. Fig. 11 shows that on
average participants interacted with Shimi for a longer period of
time [F(1, 16)¼10.94, po :01] and said more phrases [F(1, 16)¼
6.39, po :05] when Shimi used the emotional intelligence system.
Overall, the results suggest that participants perceived Shimi as
being more attentive and responsive when using the emotional
intelligence system. Participants also preferred to say more and
interact for longer periods of time when Shimi utilized emotional
intelligence as opposed to randomly responding.

6.2. Discussion

The content provided by the participants during the free speak
interaction varied much more than anticipated. Some really
thought about what they said and attempted to elicit certain
emotions in Shimi. Others said things which seemingly did not
have any emotional content at all such as “I am 21 years old.”
Though the script reading was incorporated to control for this
variation, it proved difficult to encourage people to interact with

Table 3
Correlation values for each parameter where bold values indicate no statistical
significance or p4 :05.

Parameter Happy Sad Anger Fear Disgust Surprise

Posture height .26 � .51 � .34 .02 � .21 .21
Head nodding 25 � .30 � .13 � .09 � .26 .08
Head shaking � .25 � .09 .27 � .13 .1 � .30
Gaze .28 � .51 � .29 .16 � .08 .34
Volatility � .3 � .54 .32 � .15 .1 � .35
Exaggeration .21 .11 .19 .25 .28 .32

Fig. 11. Mean results for length of time (in seconds) spent interacting with Shimi
and number of phrases spoken during the free speak interactions for Group 1 (with
intelligence) and Group 2 (random). For both objective measures the mean
differences between groups were statistically significant.

M. Bretan et al. / Int. J. Human-Computer Studies 78 (2015) 1–16 13



Shimi without biasing the results by explicitly telling themwhat to
say. Constraining the free speak interaction to a number of
suggested topics may be useful in the future. The ANOVA results
of the objective measurements do, however, indicate there was a
preference to interact with Shimi for longer periods of time when
it used the emotional intelligence system.

After each trial the we interviewed the participant to gauge
their experience. The interviews further validated Shimi's ability to
convey emotion through its movements in a manner which is
understandable to people. For example, during one participant's
interaction, Shimi, by chance, responded with angry gestures
many times. The participant did not think that this was a
consequence of Shimi misunderstanding the emotional content
of what was being said, but rather “Shimi was just an angry robot.”
Another participant described Shimi as seeming “really surprised”
to what was being said. Another said “I love how happy Shimi is.”
On one final note, we did not formally measure whether Shimi
could induce specific emotions in people using its gestures.
However, in this study we noticed that participants seemed to
exhibit an expression of satisfaction and joy when Shimi appro-
priately responded to an emotional phrase despite the emotion
being conveyed. This suggests Shimi can successfully communicate
emotion with its gestures, though inducing emotion (as humans
do) seems less promising with the current system and interaction.

7. Future work

Future work involves both the expression and perception
aspects of robots and emotion. The perception system described
here assumes everything that is said has emotional content and
does not attempt to distinguish emotionally neutral statements. A
neutral classification can help the interaction to be more engaging
and may provoke more emotional content from the participants in
an attempt to get Shimi to respond.

Another goal is to expand Shimi's recognition beyond the six basic
emotions to include a wider range of variation. This can be done by
getting additional content for the corpus which represents different
emotions such as love, interest, exhaustion, or boredom. Twitter data
is naturally suited for discrete emotion classification and it is some-
what of a challenge to map onto a core affect dimensional space. One
method is to use the probabilities the perceptron calculates for each
emotion and classify a phrase as a mixture of emotions (i.e. 80% anger
and 20% disgust) and perform a weighted average to estimate the
proper coordinates. Using such a method would allow us to better
take advantage of the more continuous nature of the expression
system. Additionally, some emotional gestures are more easily identi-
fiable than others (happy, sad, and anger gestures received over 90%
classification accuracy) and we can dynamically change these gestures
to convey different levels of these emotions. The literature shows that
not every version of happy or sad is equivalent so perhaps levels of
discrete emotions can be useful in achieving optimal emotive displays.

Deciding how Shimi should respond to the emotions it recog-
nizes in language is another necessary aspect of the system that
needs to be developed further. Mirroring can play a role in
displaying empathy (Pfeifer et al., 2008), but some emotions, such
as anger, are believed to be tools for manipulating others in a
social context. Mirroring would not be appropriate in this context.
Discriminating between possible sources of a person's emotions
seems an essential next step in affective computing and is one of
the challenges (Muller, 2004) describes. Emotional perception also
varies across genders and cultures so it is reasonable to think that
Shimi's emotional intelligence system should be personalized for a
particular user. Though exactly how much is unclear. The results of
these study indicate a certain level of ubiquity in perception and

recognition so perhaps the current parameters could be used as
starting points from which the system evolves and learns.

Emotional intelligence can also be used to automate some of
Shimi's current functions. For example, currently one can explicitly
ask Shimi to play a happy song. Using affective recognition Shimi
can autonomously choose the music to play based on a person's
mood or emotional state. We have also only been examining
motion and posture as a method for expressing emotion. Shimi is a
speaker dock and using bimodal expression system which incor-
porates sound and motion can be very useful for enhancing and
reinforcing emotional expression.

8. Conclusion

Emotion is something inherent to all people and the perceptual
and communicative attributes of emotion can be salvaged to
establish more engaging and comfortable human–machine inter-
actions. Therefore, it is important for social robots to be responsive
to people and in a manner perceived as appropriate and natural.
This can be challenging depending on the DoFs and physical
capabilities available to the robotic platform.

In this article, we presented several experiments evaluating our
robot's ability to express emotion through physical behavior. Our
robot, Shimi, allowed us to explore affective expression in a robot
characterized by a small number of DoFs, non-humanoid design,
and no face. Through several experiments we found that it is
possible for a robot to still be emotionally expressive despite such
constraints.

In the first experiment we found:

1. The identifications of both static poses and dynamic physical
behaviors were significantly better than chance. This suggests
that certain characteristics of motion and pose are associated
with particular emotions. This is unlike the quantify but not
quality theory that depicts the use of body language as merely
reflecting the intensity of the emotional experience, rather than
the actual emotion.

2. The dynamic physical behaviors demonstrated better classifica-
tion accuracy than static poses. This supports previous studies
comparing emotion recognition of pose and movements of
humans (Gunes and Piccardi, 2007). However, unlike the
previous work, which focuses on identifying the emotions of
people and claims that specific body parts (torso, arms, legs,
etc.) are vital for recognition (De Meijer, 1989), we examined
the phenomena using a non-humanoid robot with only a
faceless head. Despite these physical constraints of the robot,
the classification rates of the dynamic physical behaviors were
quite high, thus, suggesting the nature in which a DoF moves
(exhibited by its velocity, acceleration, changes in direction,
etc.) plays a more significant role in emotion expression than
the specific DoF itself and its location on the body.

3. Though the differences between the video and in person
classification rates were not statistically significant, there was
an increase in recognition accuracy for each emotion for the in
person viewings (except for sadness, which achieved 100%
accuracy in both cases). There was also greater internal con-
sistency (i.e. less confusion with other emotions) for the in
person viewings compared to the video viewings. Previous
studies in human–robot interaction have shown collocated
experiences to have both positive and zero influence on the
interaction compared to a virtual experience (see Section 4.2).
The trends from our experiment suggest that physical presence
may influence the ability to recognize emotion expressed
through physical behaviors and should be researched in more
depth in the future.
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4. Seeing the robot in person versus a video resulted in an increase of
perceived magnitude of the expressed emotion. For example,
happy was happier, sad was sadder, and angry was angrier. This
was shown through more extreme user ratings of arousal and
valence for each emotion. It seems presence has a stronger affect
on the perceived intensity of the expressed emotion, rather than
the identification of the emotion.

In Section 5, we described a system for algorithmically gen-
erating emotionally expressive movement using variables inspired
by human expressive physical tendencies. These variables included
specific DoF positions, activations, volatility, and exaggeration.

In this section:

1. We described a generative architecture with methods for
representing each of the control variables as a mathematical
function.

2. Based on a user study evaluating the generative system's
control variables, we found a correlation exists between the
variables manipulating physical motion and the perceived
emotion state of Shimi. These findings support the notion that
body language and certain physical behaviors can be indicative
of specific emotions.

In Section 6, a final user study was conducted to evaluate the
utility of expressive physical behaviors on a social interaction
between a person and robot. The results of this study demonstrate
increased user engagement when the robot utilizes our system to
express emotion. This is shown through an increase in the
duration of the interaction and the number spoken phrases.

In summary, we have shown that it is possible for a physically
constrained robot to successfully express emotion through the use
of dynamic physical behaviors. Though attributes such as facial
expression and humanoid form can be undoubtedly useful, the
absence of such features does not prevent a robot from coherently
communicating emotion in an expressive manner. In lieu of a face,
limbs, and torso it is possible to express emotion through dynamic
physical behaviors by manipulating parameters of DoF activation,
volatility, gaze, exaggeration, and posture. Though such behaviors
can be useful for most robots interacting with people, they are
especially useful when using robotic platforms with very few DoFs
that may result from various constraints such as size or cost.
Additionally, designing robots with the ability to create such
meaningful affective behaviors is beneficial to human–robotic
interaction tasks as it provides increased user engagement. We
hope our architecture for autonomous generation of expressive
behaviors can be useful for others who design affective robots.
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