
OpenWoZ: A Runtime-Configurable Wizard-of-Oz
Framework for Human-Robot Interaction

Guy Hoffman
Sibley School of

Mechanical and Aerospace Engineering
Cornell University, Ithaca, NY

hoffman@cornell.edu

Media Innovation Lab
School of Communication

IDC Herzliya, Herzliya, Israel
hoffman@idc.ac.il

Abstract

Wizard-of-Oz (WoZ) is a common technique enabling HRI
researchers to explore aspects of interaction not yet backed
by autonomous systems. A standardized, open, and flexible
WoZ framework could therefore serve the community and ac-
celerate research both for the design of robotic systems and
for their evaluation.
This paper presents the definition of OpenWoZ, a Wizard-of-
Oz framework for HRI, designed to be updated during opera-
tion by the researcher controlling the robot. OpenWoZ is im-
plemented as a thin HTTP server running on the robot, and a
cloud-backed multi-platform client schema. The WoZ server
accepts representational state transfer (REST) requests from
a number and variety of clients simultaneously. This “separa-
tion of concerns” in OpenWoZ allows addition of commands,
new sequencing of behaviors, and adjustment of parameters,
all during run-time.

Introduction

Wizard of Oz (WoZ) is a common and important technique
in HRI and social robotics research (Riek 2012). It was orig-
inally developed by HCI researchers as a method for re-
searching interactive systems before speech recognition or
response generation systems were mature enough (Kelley
1983). In HRI research WoZ is often used as part of sys-
tem development, and to evaluate interaction paradigms in
laboratory and field studies.

WoZ usually includes a control console which is con-
nected to the robot, but is out of sight for humans interacting
with the robot. A researcher uses the console to trigger be-
haviors that the robot executes.

To date, most WoZ systems are custom-designed and
developed per robot, or even per specific application or
study (Villano et al. 2011; Kim et al. 2012; Hoffman et al.
2014, and many more).

Given the prevalence of WoZ in HRI and social robotics,
and the common practice of developing custom WoZ sys-
tems for each robotic platform, the time is ripe for a
community-standard framework that can serve across re-
search laboratories.

When designing such a framework, we note that much of
HRI research is conducted as a collaboration between tech-

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

nical and non-technical researchers. These non-technical re-
searchers include social scientists and domain experts. We
thus particularly identify a need for a WoZ framework that
is configurable in run-time by the person operating the robot,
without rebuilding the robot’s software.

In this paper, we present OpenWoZ, a new WoZ architec-
ture that is flexible with respect to the robot’s capabilities,
and is designed to be configurable without the need to re-
compile any of the software components of the system. In
fact, users of the system can add capabilities and behaviors
to the robot, as well as UI elements to the control console,
during run-time operation.

We describe the OpenWoZ design goals, the proposed
framework architecture, detailed elements and data flow in
the system, and a first implementation of the framework we
developed to control a newly constructed robot in our labo-
ratory.

Need for Evaluator Configuration

Many HRI research laboratories engage in two interleaved
research activities: On the one hand, researchers from dis-
ciplines such as Computer Science and other Engineer-
ing fields develop robotic systems. On the other hand, re-
searchers conduct human-subject studies evaluating these
systems as well as theoretical concepts surrounding HRI.

For simplicity, let us call these two research populations
“developers” and “evaluators”. Of course, in many cases re-
searchers act as both developers and evaluators.

Evaluators sometimes come from a background of Social
Sciences, Psychology, or a specific application field (elder
care, child development, medicine, etc.). They collaborate
with developers on designing and evaluating the robotic sys-
tems and interaction paradigms.

This leads to an inflexible situation, in which the systems,
including the WoZ components, need to be fully defined and
implemented before they can be used by evaluators. In the
common case where pilot runs or field studies reveal neces-
sary changes to the robot’s behaviors, evaluators are reliant
on developers to add these capabilities to the robot. This can
cause delay in conducting the evaluator’s research.

In fact, in most systems even tuning parameters (e.g., gaze
direction, gesture speed, on-screen text, or text spoken by
the robot) necessitates rebuilding the software running on
the robot, and is out of reach for non-developer evaluators.

121



In designing a community-standard WoZ system, we thus
identify a need for a platform that is highly configurable by
evaluators, even if they do not have any technical or pro-
gramming skills.

OpenWoZ Design Goals

OpenWoZ is a flexible Wizard-of-Oz system we have started
to develop in our laboratory. When designing OpenWoZ, we
realized several design goals:

Generality

The system should not be designed around a specific robot
morphology or behavior set, but be open-ended to be useful
for a number of different robots.

Sequencing and Simultaneous Execution

Our system should support the preset sequencing and si-
multaneous execution of robot behaviors. For example, we
would like to trigger a motor gesture and play an audio file,
either concurrently or with some defined delay.

Evaluator Configuration

As described above, the system should be open for evaluator
configuration, including both setting parameters of behav-
iors, and—ideally—adding behaviors to the robot, without
having to reprogram the robot.

For example, an evaluator should be able to add an audio
clip to the robot, and add a WoZ trigger (e.g., a button on the
WoZ panel) that plays the audio clip. Similarly, the evaluator
should be able to sequence the playback of an audio clip with
custom text that appears on the screen.

Multi-client Architecture

Given the variety of experimental setups used in HRI re-
search labs, we want to enable a similar variety of WoZ con-
trol clients.

Some applications require a large number of WoZ com-
mands, more appropriate for a desktop screen. In some cases
the hand-held nature of a smartphone application is prefer-
able, be it for reasons of discretion or mobility. We thus want
the system to be agnostic to the particular client architec-
ture controlling any particular robot (the “separation of con-
cerns” design principle). In addition, ideally more than one
WoZ operator could control the robot at the same time.

Built-In Common Behaviors

While Wizard-of-Oz studies vary in their requirements, and
different robots have different capabilities, we identified a
number of common behaviors that appear across a variety
of robots used for HRI research. These behaviors should be
implicitly supported by the OpenWoZ platform as built-in
components:

• Executing a Motor Sequence — The WoZ system
should enable the playback of a preset motor sequence.
We also would like to allow some variability in the play-
back of the sequence, including playback speed, ampli-
tude, and left/right mirroring.

• Audio Playback — The WoZ system should allow the
playback of audio files, usually voice expression by the
robot. It should also allow text-to-speech output on the
robot.

• Screen Display — The WoZ system should allow the dis-
play of images and text on the screen display of the robot,
in case it has one. It should allow some text adjustment,
including placement and font size, as well as positioning
of images.

In addition, the system architecture should be designed
to enable the addition of custom behaviors beyond the ones
mentioned above, with the optional setting of parameters for
these custom behaviors.

Architecture

In this section we present the OpenWoZ architecture. The
different components of OpenWoZ and their relationships
can be found in Figure 1.

The system can be divided into three parts: (a) The robot
side, which includes the WoZ server, interpreter, and re-
source files (blue elements on the right side of Figure 1); (b)
The evaluator side, which includes the WoZ control clients
(yellow elements on the top left of Figure 1); and (c) The
cloud database, which includes the information backing the
WoZ clients (green elements on the bottom left of Figure 1).1

On the highest level, the system operates as follows: The
robot hosts a set of resource directories which define its stan-
dard behaviors, and has a number of hard-coded custom be-
haviors. It runs an HTTP server and a command interpreter
which triggers these behaviors. Clients are front-ends for a
push cloud database, which holds the various behaviors the
evaluator can trigger on the robot. These front-end clients
get updated whenever behaviors are added to the system via
the cloud DB, and send RESTful GET requests to the robot
HTTP server when a trigger is activated.

Core Elements and Nomenclature

Before describing the system in detail, we want to define the
core elements and nomenclature at the base of OpenWoZ.
We will illustrate these concepts through an imagined WoZ
interaction, where a WoZ evaluator causes the robot to wave
its hand at 50% speed and say “Hello” at full volume. The
speech commences 500ms after the hand wave starts. Fig-
ure 2 illustrates these interrelated concepts, using the same
example interaction.

Event An Event is an atomic requested behavior in the
robot. It corresponds to the smallest building block of robot
behavior. In our example, an event would be slow wave or
say hello.

Sequence A Sequence is a list of events with time codes
associated with them. This enables the operator to activate a
number of commonly co-occurring events simultaneously or

1There is previous work suggesting a cloud-based WoZ sys-
tem (Sincak et al. 2015). However, in that work, the cloud com-
ponent of the WoZ system was mainly concerned with hosting the
client UI on the web.

122



Figure 1: The OpenWoZ Architecture: Evaluators control the robot through the WoZ interface on one of a number of alternative
clients (e.g., Native, HTML, Mobile, Speech); clients are initialized by the cloud-backed database, which contains events and
sequences, synchronized live to the clients during runtime; clients translate events into REST URIs sent via HTTP GET requests
to the robot server; the commands and parameters are parsed by the server and passed to the interpreter, which uses files in the
server’s resource folders to generate robot behavior. Evaluators can configure the system at runtime by uploading files to the
server resource folders, and by editing events and sequences in the cloud database using the DB interface.

sequentially, without having to manually schedule the events
every time. In our example, the sequence wave hello
would include two events: slow wave at time 0ms, and
say hello at time 500ms.

Trigger A Trigger causes an event or a sequence to be sent
to the robot. This corresponds to the perceptual root of a be-
havior, which the WoZ system replaces. It could be a word
that triggers that event or sequence, or an external event
(such as the robot’s temperature rising beyond a threshold)
which the WoZ operator enacts. In a button-based interface,
each button corresponds to one trigger. In our example (Fig-
ure 2), we associate detecting the word “yo” or a button la-
beled “Yo” with triggering the sequence wave hello.

Command A Command is the internal name a for a single
action the robot can execute. It comes with optional param-
eters. In the example, the commands are sound and move.

Request Finally, a Request is the communication mes-
sage sent from a WoZ client to the robot server, con-
taining one command along with its parameters. Our ex-
ample would cause two requests, one for the gesture
(/move/wave?speed=.5), and one for the audio file
(/sound/hello?volume=1).

HTTP Server

On the robot side, OpenWoZ runs as a thin HTTP server
accepting requests from a multitude of clients. It parses the
requests into the underlying commands and parameters and
sends these to the OpenWoz interpreter, which uses them to
cause the various robot behaviors.

The Representational State Transfer or “REST” inter-
face (Fielding 2000) is a commonplace software architecture
that was designed to access online resources easily and effi-
ciently, providing flexibility and human-readability. It is laid
over HTTP requests and uses Uniform Resource Identifiers
(URIs) to manipulate information on the server.

An OpenWoz client can access a number of commonly
used server resources: motors, speakers and screens. We
translate this into three matching REST resources: move,
sound, and display. Developers can of course add ad-
ditional resources as needed based on any particular robot’s
capabilities.

move This resource causes playback of a motor sequence
with optional parameters. When this request is received, the
Interpreter looks in the motor sequence resource folder for a
motor sequence file of the name specified in the URI.

The file is formatted in JSON, specifying the frames of
motor positions to be sent to each motor, and their timing.

123



Figure 2: The interrelation between the concepts and components in the OpenWoZ framework: The user activates a trigger
associated with an event (a) or a sequence (b). In an event, the commands and parameters cause a request URI to be generated
and sent to the server. In a sequence, the client generates one request per sequence sub-event.

The sequence is played back on the robot, using optional pa-
rameters. The sequence can be time stretched based on the
speed factor, it can be diminished or exaggerated based on
the amplitude factor, and it can be mirrored by multiply-
ing the motor commands for axis-symmetric motors by −1.

For example, to play back the motor sequence found in
the resource file wave.json at half speed, the REST URI
would be /move/wave?speed=0.5.

sound This resource causes the robot to play back a
sound with optional parameters, either from a file or from
text-to-speech. When an audio file request is received, the
Interpreter looks in the audio clip resource folder for an au-
dio file of the name specified in the URI, with an optional
volume.

For example, to play back the audio file say-
ing “Hello” found in the resource file hello.wav
at full volume, the REST URI would be
/sound/file/hello?volume=1. Similarly, to
trigger text-to-speech of the phrase “Hello there”, the URI
would be /sound/text/hello%20there

display This resource causes the robot to display an im-
age or text with optional parameters. When an image request
is received, the Interpreter looks in the image resource folder
for an image file of the name specified in the URI, with an
optional x and y position, and scale. Similarly, the request
can display text on the screen by specifying the text string,
with optional x, y, and fontsize parameters.

An example of an image display URI would be in
the form of /display/image/frog.png?scale=2,
and an example of a text display URI would be
/display/text/hello%20world?fontsize=20.

Finally, the RESTful nature of the server supports custom
actions that can be tailored to each robot separately by defin-
ing additional REST resources.

Cloud Database

The cloud database (DB) is the back-end defining the func-
tionalities of a specific robot or WoZ interaction. We chose
this design in order to separate the specific requests clients
can send to the robot server from the actual client code.
In fact, client applications do not know anything about the
server’s capabilities, and rely on the cloud DB to provide
them with the command space evaluators can use.

The DB contains two types of data, as defined above:
Events and Sequences. Event elements contain four fields,
in addition to their name: a trigger for the event, an optional
human-readable label, the command that needs to be exe-
cuted and optional parameters.

Sequence elements also have a name, and contain a trig-
ger, an optional label, and a list of pairs, each containing a
time, relative to the beginning of the sequence, and an event.
If two consecutive events have the same time code, they are
triggered simultaneously.

The database is globally shared with all the clients. Also,
the DB functions as a “push” service: Any time the database
is updated by the evaluator, all the clients associated with
that database reflect the update instantly during runtime.

Client

OpenWoZ clients are designed to be lightweight and span
a variety of platforms based on the research needs. There
is no single client for OpenWoZ, but instead a specification
schema of three behaviors a client needs to support as part
of the framework.

Initialization from Cloud DB First, clients initialize by
querying the cloud database and loading the set of available
events and event sequences. These are then displayed to the
user by their optional label or, in the case of no label, by the
event or sequence name.

124



Figure 3: Mobile (left) and Dynamic HTML (right) OpenWoZ clients. A mouse hover in the HTML client shows the REST
URI sent by the client.

Runtime Push Update Clients should respond to push
updates from the cloud database. These can include the in-
sertion, deletion, or modification of an event or event se-
quence. When a push update happens, this should be re-
flected in the UI by adding, removing, or updating the in-
terface element connected to this event or sequence.

REST Request Generation Finally, clients should gener-
ate one or more REST request URIs based on the commands
and parameters associated with the triggers activated by the
evaluator, and in accordance with the server’s defined re-
sources.

Runtime Configuration Example

Evaluators can add behaviors to the system during run-time,
without recompiling—or even restarting—the client or the
server.

For example, to add a new motion sequence with an as-
sociated sound, an evaluator creates a new motion sequence
JSON file. To allow easy generation of these files, we have
developed an OpenWoZ exporter for the open-source 3D
animation software Blender. The exporter converts Blender
animations into the JSON file format expected by the in-
terpreter for playback. Alternatively, evaluators can edit ex-
isting motion sequence JSON files, or create new sequence
files manually.

The evaluator then uploads the JSON file with the appro-
priate name (e.g., a bowing sequence called bow.json)
into the motion sequence resource directory on the server.
Similarly, the evaluator can upload an audio file to the audio
clip resource directory on the server (e.g., a voice clip saying
“Nice to meet you” as nice2meet.wav).

To add the new behavior, the evaluator inserts a new event
for the motion sequence into the cloud database, using the
move command and the name of the JSON file. She also
inserts a new event using the sound command for the audio
clip. Finally, the evaluator inserts a sequence entry in the
database that includes both events at time 0, and gives it a
label “Greet”.

All of the OpenWoz clients automatically update to re-
flect these new events and sequence, and now show a new

button labeled “Greet”, which will simultaneously send two
HTTP GET requests to the server, with URIs /move/bow
and /sound/nice2meet.

Implementation

We have implemented a first version of the OpenWoZ frame-
work and used it successfully to control a newly constructed
robot with five motors, a display embedded in the robot’s
head, and a speaker for voice output.

The server was custom-written in Java and runs on a Rasp-
berry Pi-2 Model B controlling the robot. To illustrate the
flexibility on the client side, we implemented three clients:
(a) an Android smartphone application (Figure 3 left); (b)
a Dynamic HTML page, which also displays the REST re-
quest when the mouse hovers over one of the buttons (Fig-
ure 3 right); and (c) a voice-recognizing client (not shown),
which uses Google Voice Search for text-to-speech, and
scans the resulting phrase for trigger keywords associated
with the event or sequence. The current implementation of
OpenWoz uses FireBase as the cloud database, a fast and
easy-to-configure cloud database with push support and a
wide range of client APIs.

Conclusion and Future Work

We described a new framework for a flexible Wizard-of-
Oz system, OpenWoZ. The framework is designed using
the “separation of concerns” principle, and uses lightweight
multi-platform clients backed by a push cloud database
sending REST requests to a thin HTTP server. We also re-
port on a first implementation of this framework, which we
use to control a new robot in our laboratory. This is work in
progress, and we are currently working on ways to improve
the framework and system, in several ways:

First, we would like to allow the robot server to load cus-
tom actions as Python scripts, which can be loaded during
run-time. This would allow for run-time addition and editing
of behaviors beyond the three standard behaviors described
above.

Furthermore, evaluators currently have to insert and edit
entries in the database to add events and sequences. This

125



might still be an entry barrier for researchers. We would like
to develop a better interface to add events and sequences.

It might make sense to be able to structure sequences di-
rectly as command-parameter arrays, instead of indirectly
linking them to events. Alternatively, both approaches could
be combined in the sequence data structure.

Finally, we would like to connect new server capabili-
ties with the information in the cloud database more seam-
lessly. Currently, the server and database are not connected,
requiring modification of both when adding a new behav-
ior. Ideally there can be an automatic way to reflect new
server capabilities (i.e., newly uploaded resource files) in the
database.

In conclusion, as Wizard of Oz is becoming an increas-
ingly important technique for both the development and
evaluation of Human-Robot Interaction research, the com-
munity can benefit from an open, flexible, and general
framework for WoZ software. The OpenWoZ framework
described herein provides such a framework with the addi-
tional benefit of allowing evaluators to configure WoZ capa-
bilities during runtime, without necessitating rebuilding or
restarting the underlying software.

References

Fielding, R. 2000. The representational state transfer
(REST). Ph.D. Dissertation, University of California, Irvine.
Hoffman, G.; Birnbaum, G. E.; Vanunu, K.; Sass, O.; and
Reis, H. T. 2014. Robot responsiveness to human disclosure
affects social impression and appeal. In Proceedings of the
2014 ACM/IEEE international conference on Human-robot
interaction, 1–8. ACM.
Kelley, J. F. 1983. An empirical methodology for writ-
ing user-friendly natural language computer applications. In
Proceedings of the SIGCHI conference on Human Factors
in Computing Systems, 193–196. ACM.
Kim, E. S.; Paul, R.; Shic, F.; and Scassellati, B. 2012.
Bridging the research gap: Making HRI useful to individ-
uals with autism. Journal of Human-Robot Interaction 1(1).
Riek, L. D. 2012. Wizard of Oz studies in HRI: a systematic
review and new reporting guidelines. Journal of Human-
Robot Interaction 1(1).
Sincak, P.; Novotna, E.; Cadrik, T.; Magyar, G.; Mach, M.;
Cavallo, F.; and Bonaccorsi, M. 2015. Cloud-based Wiz-
ard of Oz as a service. In Intelligent Engineering Systems
(INES), 2015 IEEE 19th International Conference on, 445–
448. IEEE.
Villano, M.; Crowell, C. R.; Wier, K.; Tang, K.; Thomas, B.;
Shea, N.; Schmitt, L. M.; and Diehl, J. J. 2011. DOMER:
a Wizard of Oz interface for using interactive robots to scaf-
fold social skills for children with autism spectrum disor-
ders. In Proceedings of the 6th international conference on
Human-robot interaction, 279–280. ACM.

126




