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Abstract With the aim of attaining increased fluency and
efficiency in human-robot teams, we have developed a cog-
nitive architecture for robotic teammates based on the neuro-
psychological principles of anticipation and perceptual sim-
ulation through top-down biasing. An instantiation of this ar-
chitecture was implemented on a non-anthropomorphic ro-
botic lamp, performing a repetitive human-robot collabora-
tive task.

In a human-subject study in which the robot works on a
joint task with untrained subjects, we find our approach to
be significantly more efficient and fluent than in a compa-
rable system without anticipatory perceptual simulation. We
also show the robot and the human to improve their relative
contribution at a similar rate, possibly playing a part in the
human’s “like-me” perception of the robot.

In self-report, we find significant differences between the
two conditions in the sense of team fluency, the team’s im-
provement over time, the robot’s contribution to the effi-
ciency and fluency, the robot’s intelligence, and in the ro-
bot’s adaptation to the task. We also find differences in ver-
bal attitudes towards the robot: most notably, subjects work-
ing with the anticipatory robot attribute more human quali-
ties to the robot, such as gender and intelligence, as well as
credit for success, but we also find increased self-blame and
self-deprecation in these subjects’ responses.
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1 Introduction

Our goal is to design robots that can work fluently with a
human partner in a physically situated setting. Fluency in
joint action is the quality existent when two agents perform
together at high level of coordination and adaptation, in par-
ticular when they practice a task repetitively, and are well-
accustomed to the task and to each other. This quality is
observed in a variety of human behaviors, but is virtually
absent in human-robot interaction.

Neurological and psychological evidence in humans in-
dicates that anticipation and perceptual simulation (the
internally-originating activation of perceptual neural path-
ways) plays a role in perception, in the perception of con-
specifics, and in joint action (Wilson and Knoblich 2005;
Sebanz et al. 2006). In simulated agents acting with hu-
mans, we have shown anticipation to lead to improved task
efficiency and fluency, as well as a perceived commitment
of a simulated robot to the team and its contribution to the
team’s fluency and success (Hoffman and Breazeal 2007).

Based on these findings, we believe that anticipation
through perceptual simulation can provide a powerful model
for robots acting jointly with humans if they are to collab-
orate fluently using multi-modal sensor data. To that end,
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we developed a cognitive architecture based on the princi-
ples of embodied cognition and top-down perceptual simu-
lation, ideas which are gaining ground in the neuroscientific
literature in recent years (Barsalou 1999; Spivey et al. 2005;
Wilson 2002); for a review, see: Hoffman and Breazeal
(2006).

In this paper we introduce some core concepts of our
cognitive framework and its implementation on a non-
anthropomorphic robot designed for human-robot collabora-
tion. We discuss a controlled human subject study conducted
to evaluate the performance of the implemented system, and
the effects it has on the efficiency and fluency of the task, as
well as on the human subjects’ perception of the robot and
the team. We are particularly interested in how the system
performs within the context of practice, in which the human
and the robot repeat a set of identical actions.

1.1 Related work

Human-robot collaboration has been investigated in a num-
ber of previous works, although the question of fluent ac-
tion meshing or the improvement thereof through repetition
or practice has not received much attention. Kimura et al.
(1999) have studied a robotic arm assisting a human in an as-
sembly task. Their work addressed issues of vision and task
representation, but does not address anticipation, fluency,
or practice. Other human-robot collaboration work, such as
that of Fong et al. (2001) or Jones and Rock (2002) studies
human-robot collaboration with an emphasis on dialog and
control, aimed primarily at the teleoperation scenario.

Some work in shared-location human-robot collaboration
has been concerned with the mechanical coordination and
safety considerations of robots in shared tasks with humans
(Woern and Laengle 2000; Khatib et al. 2004). Other work
addresses turn-taking and joint plans, but not anticipatory
action, practice, or fluency (Hoffman and Breazeal 2004).
Anticipatory action, without relation to a human collabora-
tor has been investigated in the area of robot navigation, e.g.
Endo (2005).

The idea of top-down biasing has been utilized in com-
putational systems in the past, for example in visual action
recognition (Bregler 1997). Wren and Pentland created a ro-
bust human dynamic recognition and classification system
by feeding likelihood data from high-level HMM procedures
to pixel-level classifiers (Wren et al. 2000). Similarly, Ham-
dan et al. (1999) classified gesture sequences using Contin-
uous Density Hidden Markov Models. Ude et al. (2007) dis-
cuss similar top-down processing ideas for visual attention
on a humanoid robot. None of these works, however, model
the top-down influences as perceptual simulation using the
same pathways used for bottom-up processing, as is sup-
ported by the neuro-psychological literature, and proposed
in this paper.

Some neurologically-inspired agent systems address the
dichotomy between fast and slow action-generation. For ex-
ample, Marsella and Gratch (2009) model emotional ap-
praisal as divided into rapid “perceptual” processing and
slower “inferential” processes. Similarly, Duffy (2000) pro-
poses a Social Robot Architecture, which distinguishes be-
tween “reactive” and “deliberative” mechanisms. Both these
and similar approaches focus on the dynamics between two
tiers of reactive behaviors, but describe the two kinds of sys-
tems as distinct and separate, albeit interrelated. Such sym-
bolic approaches do not model anticipation in a way that
takes into consideration the gradual transition from deliber-
ate to automatic behavior as it occurs in repetitive percep-
tion, as we propose in this work. Moreover, our system fo-
cuses on the perceptual pathways, introducing the notion of
combining real perception with simulated perception as a
mechanism of improved reaction times for collaborative ro-
bots.

Our own previous work in anticipatory action to sup-
port human-robot fluency was implemented on a simulated
agent, using a discretized model framed as a stepwise MDP
with simulated perception, and no perceptual simulation
(Hoffman and Breazeal 2007). This paper significantly ex-
tends this work as it models anticipation through the simula-
tion of perceptual symbols. Furthermore, the work presented
here is implemented on a physical robot using noisy, contin-
uous sensory input, acting in a situated interaction with a
moving human.

2 Cognitive architecture

This section provides a brief outline of the principles guid-
ing the cognitive architecture employed in the studies de-
scribed below. It is by no means complete, and primarily
serves to set the stage for the experimental results obtained
in the human subject study. A full description of the cogni-
tive architecture is the topic of a separate publication.

We propose that fluency in joint action achieved through
practice rests on two premises: (a) anticipation based on a
model of repetitive past events, and (b) the modeling of the
resulting anticipatory expectation as perceptual simulation,
affecting a top-down bias of perceptual processes.

To allow for this approach, we model concepts leading to
actions not as amodal symbolic structures, but as instances
of activations residing within the perceptual streams that
process sensory data. Thus, actions are triggered bottom-up
through activation originating in perceptual stimulation, and
conversely anticipated concepts bias the sensory pathway
detecting the features of that concept, leading to diminished
reaction times for confirmatory sensory events, and resulting
in higher fluency and efficiency in practiced actions.
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2.1 Modality streams and process nodes

In our model, sensory input is processed in modality streams
built of interconnected processing nodes (Fig. 1). These
nodes can correspond to raw sensory input (such as a visual
frame or a joint sensor), to a feature (such as the dominant
color or orientation of a sensory data point), to a property
(such as the speed of an object), or to a higher-level concept
describing a statistical congruency of features of properties.
This structure is in the spirit of the Convergence Zones de-
scribed in Simmons and Barsalou (2003).

While there is no inherent difference between these cate-
gories, in our work we often think about different layers of
nodes, which we refer to—from bottom to top—as: sensor,
feature, property, and concept nodes.

Modality streams are connected to an action network
consisting of action nodes, which are activated in a simi-
lar manner as perceptual processing nodes. An action node,
in turn, leads to the performance of a motor action, and is
usually fed by the Concept node layer.

Connections between nodes in a stream are not binary,
but weighted according to the relative influence they exert
on each other.

Importantly, activation flows in both directions, the affer-
ent—from the sensory system to concepts and actions—and
the efferent, in the opposite direction. This affordance of top-
down (efferent) perceptual processing is at the core of our
approach:

Each node contains a floating-point activation value, α,
which represents its excitatory state, may affect its internal
processing, and is in turn forwarded (potentially altered by
the node’s processing) to the node’s afferent connections. In

Fig. 1 A process node within a modality stream. Weighted activation
travels both up from sensory events to concepts an actions (the afferent
pathway), and—through simulation—back downstream (the efferent
pathway)

a purely bottom-up framework, this activation represents the
tiered analysis of sensory information towards action selec-
tion. Information flows up from sensory nodes, is distilled
through feature, property, and concept nodes, and may acti-
vate one or more action nodes leading to motor activity.

A separate simulated activation value σ is also taken into
account in the node’s activation behavior and processing.
This value represents simulated perception that does not di-
rectly stem from sensory data. Its source is internal to the
cognitive system, and could originate, for example, from an-
ticipation of a perceptual event, or intermodal priming. σ is
added to the activation propagation when a node activates its
afferent processing nodes. Also, σ +α is used as a motor ac-
tion trigger value in the action nodes. This dual mechanism
allows us to model priming.

2.2 Priming

In humans, we observe the psychological phenomenon of
“priming”, or the bias (often measured as a decrease in re-
sponse time) towards a previously triggered sensory or re-
called memory event. Such priming can occur through cross-
modal activation, through previous activation, or from mem-
ory recall. Seen as a core element in fluent joint action,
we can model priming through the efferent pathways in the
modality streams:

If a certain higher-level node n is activated through prim-
ing, the lower-level nodes that feed n are partially activated
through the simulation value σ on the efferent pathway. As
σ is added to the sensory-based activation α in the lower-
level nodes, this top-down activation inherently lowers the
perceptual activation necessary for the activation of those
lower-level nodes, decreasing the real-world sensory-based
activation threshold for action triggering. The result of this
is reduced response time for anticipated sensory events, and
increasingly automatic motor behavior.

For example, let us assume a simple sensory activa-
tion stream which includes a sensor detecting the one-
dimensional position x ∈ [−1,1] of an object of inter-
est (Fig. 2). This could be a goalkeeping agent playing a
“Pong”-like game. The one-dimensional sensor feeds into
two feature nodes, which correspond to the object being
“left” or “right”. In this example, the activation α ∈ [0,1]
of the “left” node would correspond to max(−x,0), and the
activation of “right” to max(x,0). Therefore, the more “left”
the object of interest is, the more the “left” feature node
would be active, and vice versa for the “right” feature node.
The two feature nodes feed, in turn, into a “left” action or a
“right” action to be performed. This could be a force applied
to the motor layer of the agent with the aim of intercepting
the object of interest.

If, in this network, the robot was primed toward a “right”
perception (for example, inter-modally through a vocal com-
mand, intra-modally through a related sensory or memory



406 Auton Robot (2010) 28: 403–423

Fig. 2 A simple network illustrating the afferent and efferent path-
ways between process nodes. This network analyses the output from a
one-dimensional sensor

Fig. 3 Priming in the simple network shown in Fig. 2. Activation in
intermediate nodes occurs earlier when sensory data matches anticipa-
tory perceptual priming: Without priming (bottom-up processing), the
robot will activate the action only when the sensory data is −1 or 1.
When the “right” feature node is primed to the extent of 0.25, less
pronounced sensory data in the right direction can activate the “right”
action

event, or—as we use it below—through anticipation), the
efferent connection to the “right” feature node would par-
tially activate by receiving a top-down simulation value σ ,
which would add to the sensory-based activation value. In
that case, the partially activated feature node could become
fully activated with a smaller value of x, resulting in an ear-
lier appropriate action on the robot’s part. See Fig. 3 for an
illustration of this example.

The result would be an agent that uses perceptual simula-
tion to intercept faster-moving objects if it had an a-priori

bias, or prime, to the expected sensory data. This could
model an agent that gets better at playing “Pong” through
practice, or by using cross-modal perceptual information.

2.3 Practice subsystems

We have so far discussed the effects of simulated perception.
This section discusses the generation of perceptual simula-
tion for robot practice. In our framework, there are two top-
down subsystems used to support practice within the pro-
posed perceptual node architecture:

2.3.1 Markov-chain Bayesian anticipatory simulation

The first subsystem is a Markov-chain Bayesian predictor,
building a probabilistic map of node activation based on re-
curring activation sequences during practice. This system is
in the spirit of the anticipatory system described in Hoffman
and Breazeal (2007). This subsystem triggers high-level
simulation (mainly in Action and Concept nodes), which—
through modality stream’s efferent pathways—biases the ac-
tivation of lower-level perceptual nodes.

If the subsequent sensory data supports these perceptual
expectations, the robot’s reaction times are shortened as de-
scribed above. In the case where the sensory data does not
support the simulated perception, reaction time is longer and
can, in some cases, lead to a short erroneous action, which is
then corrected by the real-world sensory data. This subsys-
tem corresponds to single-modal practice through repetition.

2.3.2 Inter-modal Hebbian reinforcing

An additional mechanism of practice is that of Hebbian re-
inforcement on existing activation connections. While most
node connections are fixed, some can be assigned to a
connection reinforcement system, which will dynamically
change the connection weights between the nodes. This sys-
tem works according to the contingency principle intro-
duced in Hebb (1949), reinforcing connections that co-occur
frequently and consistently, and decreasing the weight of
connections that are infrequent or inconsistent (the “fire to-
gether, wire together” principle).

More formally, let as denote the activation value of the
upstream (or start) node of a connection governed by the
connection reinforcement mechanism, and ae the activation
value of the downstream (or end) node of the same connec-
tion. Then, if as is greater than a threshold ε, we compute
δs→e = (as − ε) × (ae − β), for a second threshold β . This
value δs→e is then added to the current connection weight.

Let δs ≡ maxe(δs→e) and Es ≡ arg maxe(δs→e). Es is
thus the downstream node of node s that applies for the high-
est reinforcement value at a given moment. In each update,
we additionally decrease the connection weight of all con-
nections s → e, for e �= Es , by δs .
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This subsystem thus reinforces consistent coincidental
activations, but inhibits competing reinforcements stem-
ming from the same source node, leading to anticipated
simulated perception of inter-modal perception nodes. This,
again, triggers top-down biasing of lower-level perception
nodes, shortening reaction times as described above. Please
refer to Sect. 4.2.2 for a demonstration of the effect of repe-
tition on connection weight.

3 Application

We have implemented an instantiation of the proposed archi-
tecture on a robotic system, which we subsequently used to
evaluate our approach in a controlled human-subject study.

3.1 Robotic platform

The robot employed in this evaluation was AUR, a robotic
desk lamp, seen in Fig. 4(b). The lamp has a 5-degree-of-

freedom arm and a LED lamp which can illuminate in a
range of the red-green-blue color space. AUR is stationary
and mounted on top of a steel and wood workbench locating
its base at approximately 90 cm above the floor. Its process-
ing is done on a 2x Dual 2.66 GHz Intel processor machine
located underneath the workbench.

The robot uses a Vicon motion capture system to identify
and track the location and orientation of the human’s right
hand at a frequency of 10 times per second. This was made
possible by a special glove with retroflective markers on it,
worn on the human’s right hand.

The system also takes input from Sphinx-4, an open-
source speech recognition system created by the Sphinx
group at Carnegie Mellon University, in collaboration with
Sun Microsystems Laboratories, Mitsubishi Electric Re-
search Labs, and Hewlett Packard (Walker et al. 2004).
The commands recognized by the system in this task were:
“Come”, “Come Here”, “Go”, “Red”, “Blue”, “Green”, and
“Off”.

Fig. 4 (a) Diagram, and
(b) photograph of the
collaborative lighting task
workspace. (c) Carboard at each
task location. (d) Sample
experimental sequence



408 Auton Robot (2010) 28: 403–423

3.2 Task description

In the human-robot collaboration used in our studies the hu-
man operates in a workspace as depicted in Fig. 4(a) and (b).
The robot could direct its lampshade to different locations
around its own axis, and change the color of the light beam.
When asked to “Go”, “Come”, or “Come here” the robot
would move to the location of the person’s hand, assum-
ing the hand was relatively static. Additionally, the color
changed in response to speech commands to one of three
colors: blue, red, and green.

The workspace contained three locations (A, B, C). At
each location there was a white cardboard square labeled
with the location letter, and including four doors (Fig. 4(c)).
Each door, when lifted, revealed the name of a color writ-
ten underneath. The task was to complete a sequence of 8
actions, which was described in diagrammatical form on a
sequence sheet as shown in Fig. 4(d). This sequence was to
be repeated 10 times, as quickly as possible.

Each action in the sequence specifies: a general location
A, B, or C, and an indication of which of the four doors
to open. The action is completed when the lamp shines the
specified color of light at that location. This would result in
the sound of a buzzer, indicating the person should move
to the next action in the sequence. A different buzzer was
sounded when a whole sequence was completed. Neither
the human, nor the robot, know the order of actions in the
task sequences, or the names of the colors hidden behind the
doors, at the beginning of the task.

4 Cognitive network

To solve the task described in this paper, we designed a cog-
nitive network along the principles introduced in Sect. 2.

4.1 Modality streams

The network is made up of three modality streams: a vi-
sual, an auditory, and a proprioceptive stream. The action
network includes five actions, three color changing nodes, a
color “off” node, and a “goto position” node.

4.1.1 Visual modality

The visual modality stream’s sensory input stems from the
Vicon motion capture system, indicating the hand position
in the workspace. Two feature areas are downstream from
that Vicon sensory node: in one, four workspace segmenta-
tion feature nodes activate proportionally to the proximity of
the hand to each of the four corners of the workspace. In the
other, a speed node detects the speed as a single-frame po-
sition derivative of the hand position. Downstream from the

speed node, an inhibitory connection feeds the “Stillness”
feature node, which simply detects the inverse of the speed
node clamped between 0 and 1. The stillness node feeds into
a property node indicating whether the hand has been still
for some consecutive period of time. Three concept nodes
represent the location of the hand near one of the task tar-
gets, A, B, or C. Note that the robot does not know the
location of the targets ahead of time, but infers them from
combination of stillness and hand position feature nodes.

The target concept nodes are connected to the “goto po-
sition” action node, as is a conjunction node combining the
“stillness settled” and the “Go” speech feature node. A com-
bination of a hand position near the target, an aggregate still-
ness of the hand, and a “Go” command will trigger this ac-
tion, leading the robot to move its beam towards the appro-
priate position.

4.1.2 Auditory modality

The auditory modality stream uses input from the Sphinx
speech recognition system, parsing the auditory input into
speech tokens. This sensory node feeds five speech feature
nodes, which respond to the detection of a particular speech
token in the auditory stream. Four of the speech feature
nodes have afferent connections to the four light change ac-
tion nodes, the fifth leads, through, a conjunction node as
described above, to the “goto position” action node.

4.1.3 Proprioceptive modality

Finally, the proprioceptive modality stream is based on the
joint positions of the robot, thus representing the robot’s
sense of physical self. This simple modality stream has a
direction feature node, which calculates the lamp head di-
rection from the joint positions. This node, in turn, feeds
into left, right, and center property nodes, which classify the
overall orientation of the robot.

4.2 Practice subsystems

The implementation of the practice subsystems for this task
is as follows:

4.2.1 Markov-chain Bayesian predictor

Using a 3-step sequence history Markov model, the learner
estimates the probability of the appropriate target board, and
the “Go” action being expected. The probability of a certain
concept to be triggered next, denoted p, is translated into a
simulation value σc = (p + γ ) × p. In our experiments, we
used γ = 0.4. For the action simulation factor, we used a
linear coefficient, σa = p × γ . In the experiments described
below, γ = 0.25.
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Fig. 5 Probability for an
anticipated event and a not
anticipated event in case of a
consistent human, based on the
Markov-chain Bayesian
predictor

Fig. 6 Simulation values for
anticipated concept and action
with a consistent human
teammate, based on the
Markov-chain Bayesian
predictor. Compare the
quadratic concept simulation
value used in our experiments
with a linear derived activation
converging on the same number

This simulated value then moves down the efferent
modality stream, biasing visual perceptual nodes. As a re-
sult, feature nodes simulate to the extent that they are cor-
related with the appropriate hand-target concept. Thus an
increasing distance between the hand position and the cor-
rect target is adequate to trigger the appropriate response,
and robot reaction time is decreased.

Figure 5 shows the probabilities of anticipated concepts
for a consistent human teammate. The graph shows these

probabilities at the same step for each attempt for a given
expected concept, and for a not-anticipated concept.

Figure 6 shows the simulation value associated with the
probabilities shown in Fig. 5. Compare the quadratic con-
cept simulation value with a linear derived activation con-
verging on the same number.

Figure 7 shows the change in trigger area for each of the
areas using a simple A-C-B sequence with ten iterations.
The longer the practice session, the more “primed” the per-



410 Auton Robot (2010) 28: 403–423

Fig. 7 Effect of emulator on
trigger distances for each of the
three locations using a simple
A-C-B sequence

ceptual stream is, and the further away the hand position can
be to result in a concept and subsequent action activation. If,
at the beginning of a session, the human’s hand needs to be
as close as 20 cm from the target for the robot to move, after
8 consistent trials, the robot responds to a hand position as
far as 60 cm, granted that this move is towards an anticipated
target location.

As described in Sect. 2.3.1, we found that if the human
moves in the wrong direction for a certain next step, in many
cases the robot is triggered to move briefly in the correct di-
rection before following the human’s command. This often
results in a joint matched movement to one and then to the
other direction performed by both the human and the robot,
a “double-take” of sorts. We believe that such an embodied
mirroring behavior could play a role adding to the team’s
sense of bond, as well as to the human’s perception of the
robot as similar to themselves. We further explore this no-
tion in our experiments below.

4.2.2 Hebbian reinforcement

In addition, we used inter-modal simulation, affected by the
Hebbian process described above, between the robot’s pro-
prioceptive property nodes, which sense the robot’s joint
configuration (“Left”, “Right”, and “Center”), and the audi-
tory feature nodes, as described in Sect. 2.3.2. Thus, certain
physical configurations of the robot lead to the simulation
of a certain word in the auditory stream, resulting in the per-
ceptual simulation of that speech segment when the robot
reaches a certain position. If there is a consistent correla-
tion between position and color, the robot will increasingly

trigger the appropriate color without an explicit human com-
mand.

The effects of connection reinforcement on inter-modal
simulation can be seen in Fig. 8. The first graph shows the
weights between the Center Property Node and each of
the color speech feature nodes with a mostly consistent map-
ping between the two modality instances.

The second graph shows the effects of mostly alternating
contingency between the proprioceptive node and the speech
feature nodes. Across the experimental sequence, these re-
inforcements cancel each other out and result in a low sim-
ulation factor between these nodes.

5 Experimental design

To evaluate the validity of our approach to human-robot
teamwork, we conducted a between-group controlled ex-
periment with two conditions. The control (or REACTIVE)
condition corresponds to the baseline condition in which
no anticipatory simulation or cross-modal reinforcement oc-
curred. The remainder of the system, i.e. the perceptual net-
work and all activation streams and thresholds, were identi-
cally retained. In the second (FLUENCY) condition, the sim-
ulation subsystems were active with fixed parameters.

To control for instruction bias, neither group was told
whether the robot will adapt to their behavior. All partici-
pants were allowed to practice with the system before begin-
ning the experiment. The full instructions of the experiment
can be found in Hoffman (2007).
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Fig. 8 Hebbian reinforcement
between the proprioceptive and
auditory modality with
(a) predominantly consistent
contingency and (b) inconsistent
contingency

The experiment included two sequences, or “patterns”.
Pattern A was associated with a setup in which there were
different colors under the different doors. In Pattern B there
was a one-to-one mapping between location and color, i.e.,
the same color was hidden under all four doors in a single

location. For example, all doors in location B hid the color
“Blue”, and all doors in location A hid the color “Green”.
Therefore both the human’s memory and the robot’s inter-
modal reinforcement process could more easily learn the
correct association between spatial location and color.
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We recruited 38 subject from the campus and area com-
munities, through email solicitation. They were arbitrarily
designated to one of the two experimental conditions, and
for each subject, they were arbitrarily assigned the order of
sequences between Pattern A first, and Pattern B first. At the
last day of the experiment we experienced an unrecoverable
hardware failure, forcing us to release the last 5 subjects.
We thus remained with 33 subjects (17 male), 15 in the
REACTIVE condition, and 18 in the FLUENCY condition.
Two additional subjects in the FLUENCY condition expe-
rienced a mechanical failure. This was resolved in a short
period of time, and the subjects continued the experiment.
The failure affected the amount of data we were able to ob-
tain from these subjects, a fact we addressed as described
below.

This experimental protocol was reviewed and approved
by the institutional review board of the Massachusetts Insti-
tute of Technology.

In sections below we will use the following terminology:

Turn is the time and actions occurring between two consec-
utive turn buzzers. These include a single event of correctly
shining the right light onto the right board.

Sequence is a set of eight turns. There are ten attempts at a
sequence.

Round is a set of ten attempts at a sequence. There are two
rounds in each experiment. The first round is the round per-
formed first; similarly for the phrase second round. Rounds
can also be identified by patterns. In this case we will refer
to Pattern A and Pattern B. Note that for different subjects
the order of patterns, i.e. the mapping between patterns and
round numbers, is different.

Task is a set of two rounds, using both patterns.

6 Results

The behavioral measures recorded in this experiment were
elicited from the log files generated by the experiment soft-
ware. The software running the robot logged a number of
events, including the human’s speech commands, the robot’s
action selection, the human’s hand position, and the experi-
menter’s buzzer times.

To account for a number of mechanical failures as men-
tioned above, as well as for mistakenly recorded turn and
sequence buzzer events, the data has been automatically
cleaned up, by eliminating the following sequences: (a) any
sequence attempt that does not contain 7–9 turns was elim-
inated; (b) any sequence attempt that lasted for less than 25
seconds or more than 180 seconds was eliminated.

As a result, two subjects’ data included only 8 sequences
in one of the rounds, one subject’s data remained with 9

sequences in both rounds, and two subjects’ data remained
with 9 sequences in one of their two rounds.

We have included the valid data from these subjects in
our analyses, except in Hypothesis H1 below. In H1, as well
as in the graphs depicting sequence-by-sequence progress
on the recorded behavioral measures, we included only data
from trials containing 10 valid sequences.

6.1 Team performance

Our first set of hypotheses were concerned with the perfor-
mance of the human-robot team. We hypothesized the fol-
lowing metrics to be significantly lower in the FLUENCY
condition compared to the REACTIVE condition:

H1 The overall task completion time (both rounds).
H2 Mean sequence attempt time.
H3 Mean sequence attempt time (second half).
H4 Best sequence attempt time.
H5 Improvement (ratio between last and first attempt).1

Using a T-test with independent samples, we find a sig-
nificant difference between the two conditions in all five hy-
potheses. All values are in seconds, except in H5, which is a
fraction.

H1 Total task time: REACTIVE: 1401.66 ± 162.90, FLU-
ENCY: 1196.26 ± 226.83; t(24) = 2.609, p < 0.05.

H2 Mean sequence time: REACTIVE: 141.38 ± 17.38,
FLUENCY: 116.21 ± 22.67; t(30) = 3.487, p < 0.01.

H3 Mean sequence time (2nd half): REACTIVE: 131.04 ±
17.76, FLUENCY: 97.93 ± 22.75; t(30) = 4.544, p <

0.001.
H4 Best sequence time: REACTIVE: 117.93 ± 16.11,

FLUENCY: 83.87 ± 18.81; t(30) = 5.461, p < 0.001.
H5 Sequence time improvement: REACTIVE: 0.76 ± 0.18,

FLUENCY: 0.50 ± 0.15; t(30) = 4.718, p < 0.001.

All of our hypotheses were confirmed, demonstrating
a significant improvement in team performance under the
FLUENCY condition. Note also, that examining the sec-
ond half of each task round leads to an increase in differ-
ence between the two conditions, and an increase in signifi-
cance.

Figure 9 shows the average sequence attempt time for
both conditions, split by round. The notion of initial prac-
tice runs is evident in this figure, as the second round starts
at a lower time than the first round. In both cases, the FLU-

1We use only data from the second round under the assumption that,
at this point, the subject is familiar with the task structure and robot,
and we thus measure only the team’s improvement and not the initial
practice needed by the subject.



Auton Robot (2010) 28: 403–423 413

Fig. 9 Mean sequence
times—per round—over two
ten-attempt practice sessions,
comparing the REACTIVE and
FLUENCY conditions

ENCY condition converges at slightly over 40 seconds, while

the REACTIVE condition maintains an average over 60 sec-

onds.

Figure 10 shows data for sequence pattern A and B , re-
spectively. Since the robot and the human “learn” the color
sequences more easily in pattern B , we see a more dra-
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Fig. 10 Mean sequence
times—per pattern—over two
ten-attempt practice sessions,
comparing the REACTIVE and
FLUENCY conditions

matic improvement in the FLUENCY condition, converg-

ing on a below-40 second score in the final sequence at-

tempt.

6.2 Fluency metrics

The second set of hypotheses tested in this experiment relate
to the fluency of the team. In Hoffman and Breazeal (2007)
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we found that in some cases, even when there is no improve-
ment in the efficiency of the team’s performance, subjects
perceive a significant difference in the fluency of the team.
In that work, we found two fluency metrics to be correlated
to the human’s sense of fluency. In the experiment presented
in this paper, we elicited the same metrics from the log files
recorded by the experiment software:

IDLE. Human idle time. The percentage of time within
each task round in which the human hand was stationary
or moved very little. This metric is elicited from the hu-
man’s hand position. A low-passed sensor with hysteresis
is triggered every time the frame-by-frame distance of the
hand position crosses a certain threshold.
DELAY. Robot functional delay. The time that passed from
the beginning of a turn to the onset of the robot’s move-
ment.

We tested the hypotheses that the following metrics are
significantly lower in the FLUENCY condition compared to
the REACTIVE condition:

H6 Mean human idle time.
H7 Mean robot functional delay.
H8 Mean robot functional delay (second half).

We found significant difference between the two condi-
tions on these three hypotheses, as well. Using a T-test for
independent samples, H6 is a ratio, H7 and H8 are in sec-
onds:

H6 Human idle time: REACTIVE: 0.46 ± 0.08, FLUENCY:
0.364 ± 0.09; t(30) = 3.001, p < 0.01.

H7 Robot functional delay: REACTIVE: 4.81 ± 9.91,
FLUENCY: 3.66 ± 15.72; t(30) = 2.434, p < 0.05.

H8 Robot functional delay (2nd half): REACTIVE: 4.07 ±
10.97, FLUENCY: 1.48 ± 6.14; t(30) = 3.487, p <

0.001.

All of our hypotheses were confirmed, demonstrating a
significant improvement in both fluency metrics under the
FLUENCY condition. Again, examining the second half of
each task round (Hypothesis H8) shows an increase in dif-
ference between the two conditions, and an increase in sig-
nificance.

The two evaluated fluency metrics are interrelated: since
subjects have been instructed to complete the task as quickly
as possible, a lower functional delay on the robot’s part
would also result in less idle time on the human’s part—
specifically the time that the human waits for the robot to
start moving. However, in previous work, we have shown
that these phenomena can occur even when the overall pace
is not increased, and separate from each other.

Based on the questionnaire responses discussed below,
we are led to believe that part of the human’s improvement
in promptness can be attributed to the increased “perfor-
mance pressure” exerted on the human team-mate, when the

robot shows a noticeable improvement in reaction time. As
shown below, this can have both positive and negative ef-
fects on the human’s perception of the robot and of them-
selves.

Figures 11 and 12 shows the average change in robot
functional delay time for both conditions, split by trial. It
can be seen, in Fig. 11(b), that in the REACTIVE condition,
the human teammate can do little to improve the robot’s de-
lay, after the initial practice period.

The efficiency results above have also been reported in
Hoffman and Breazeal (2008).

6.3 Relative contribution of human and robot

As both the human and the robotic team members undergo a
learning curve of adapting to the collaborative task, it is in-
teresting to estimate the relative contribution of each team
member to the improvement of the team, comparing the
learning rate of the human and the robot.

We estimated this measure as follows: For each sequence
attempt, we compare two of the above-mentioned metrics
to the value of the same metric in the first attempt in a given
round. Since the first round included a few practice attempts,
we only estimate this measure on the second round for each
subject.

As the robot does not adapt or learn in the REACTIVE
condition, we consider the improvement of the team in that
group to be solely on behalf of the human. We call this “the
human contribution” to the team’s improvement. Subtract-
ing the human contribution function from the improvement
of the team in the FLUENCY condition, we obtain “the robot
contribution” to the team’s improvement.

Figure 13(a) shows the relative contribution of the team
members on the improvement in sequence time. We find that
the rate of adaptation on the robot’s part roughly matches
that of the human, both contributing to about 20% of the
reduction in sequence time over the course of a ten-attempt
experimental round. We postulate that this phenomenon may
contribute to an increased sense of partnership and “like-
me” perception in human-robot teams.

So far there has been virtually no discussion in the lit-
erature about the effects of matching learning rates in tasks
where both human and robot improve on a joint task. We
find these initial results to provide a promising foundation
for future research in this area.

In Fig. 13(b) we show the robot’s contribution to the ro-
bot’s functional delay (a measure that has been shown to be
related to team fluency). Again, we see a similar adaptation
curve, but on this metric the robot’s contribution converges
on roughly twice that of the human, contributing to a circa
40% improvement compared to the human’s circa 20%.
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Fig. 11 Mean functional delay
times—per round—over two
ten-attempt practice sessions,
comparing the REACTIVE and
FLUENCY conditions

6.4 Self-report questionnaire

In addition to the behavioral metrics we have administered
a self-report questionnaire including 41 questions. These

questions were aimed to evaluate the human teammates’
reaction to the robot with and without perceptual simula-
tion. 38 questions asked the subjects to rank agreement with
a sentence on a 7-point Likert scale from “Strongly Dis-
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Fig. 12 Mean functional delay
times—per pattern—over two
ten-attempt practice sessions,
comparing the REACTIVE and
FLUENCY conditions

agree” (1) to “Strongly agree” (7). Three questions were

open ended responses. We have compounded the 38 scaled

questions into eight compound scales we propose to be valu-

able to evaluate human-robot teamwork, and have verified

the reliability of these scales within our subject population

using Cronbach’s alpha measure.
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Fig. 13 Relative contribution of
the team members on
(a) sequence time, and (b) robot
delay

– FLUENCY. The sense of fluency in the teamwork;
– IMPROVE. The team’s improvement over time;
– ROB-CONTRIB. The robot’s contribution;
– ROB-TRUST. The human’s trust in the robot;

– ROB-CHAR. The robot’s positive character traits;
– WAI-BOND. The Working Alliance bond subscale;
– WAI-GOAL. The Working Alliance goal subscale;
– WAI. The overall Working Alliance.
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Table 1 Survey questionnaire results metrics. Values are mean ± s.d.

on a 7-point Likert scale

Metric REACTIVE FLUENCY t(31)

FLUENCY 4.98 ± 0.96 5.93 ± 0.98 2.80 **

IMPROVE 5.16 ± 0.96 6.17 ± 1.09 2.80 **

ROB-CONTRIB 2.85 ± 1.11 4.00 ± 1.32 2.69 *

ROB-TRUST 4.90 ± 1.25 5.42 ± 1.28 1.17

ROB-CHAR 4.80 ± 1.32 5.41 ± 1.17 1.25

WAI-BOND 4.17 ± 1.05 4.37 ± 1.03 0.53

WAI-GOAL 3.64 ± 1.47 4.70 ± 1.31 2.19 *

WAI 4.14 ± 0.94 4.54 ± 0.94 1.22

ROB-FLUENCY 4.73 ± 1.22 6.11 ± 1.18 3.28 **

HUM-COMMIT 6.40 ± 0.74 5.83 ± 1.10 1.70

ROB-ADAPT 3.47 ± 1.46 5.94 ± 1.06 5.66 ***

The last three scales were adapted from the Working Al-
liance Inventory (Horvath and Greenberg 1989), a standard
instrument evaluating clinician-patient relationship, to fit a
human-robot joint task. We did not include a task subscale
as the questions in the original WAI task subscale were very
specific to a clinician-patient scenario.

In addition we evaluate the following individual ques-
tions, which were not compounded into scales:

– ROB-FLUENCY. The robot’s contribution to the fluency;
– HUM-COMMIT. The human’s commitment to the task;
– ROB-ADAPT. The robot’s adaptation to the human.

We hypothesized there to be a significant difference in
these metrics between the two conditions, and specifically
that these metrics be higher for the FLUENCY condition.

Table 1 shows the results for the questionnaire hypothe-
ses, and reveals significant differences between subjects
in the two experimental conditions with regard to the flu-
ency scales in the questionnaire. Both the FLUENCY and
the ROB-FLUENCY measures are significantly different at
p < 0.01. Additionally, subjects in the FLUENCY condition
rated the robot’s contribution to the team significantly higher
than subjects in the REACTIVE condition, as well as the
team’s overall improvement. This supports our hypothesis
that the proposed architecture contributes to the quality of
fluency and collaboration in human-robot teams.

While these task-related scales differ significantly, we
were not able to show a significant difference in the ro-
bot’s compound positive character traits (intelligence, trust-
worthiness, and commitment), in the trust the human put
in the robot, or in the human’s commitment to the task—
which was incidentally higher for the REACTIVE condi-
tion, if not significantly so. We believe that this is in part
due to the low expectation people have of robots, which
caused the evaluation of the REACTIVE robot to be high
as a response to the robot’s generally reliable functioning.

This hypothesis could be evaluated in a separate within-
subject experiment comparing the two robot architectures.
Also note that while the overall robot’s character was not
rated significantly different between the two conditions, the
robot’s intelligence was (REACTIVE: 4.2 ± 1.7, FLUENCY:
5.33 ± 1.08, t(31) = −2.32, p < 0.05).

On the WAI scale, the goal subscale was significantly dif-
ferent between the two conditions, while the bond
subscale—as well as the overall WAI score—were not. One
possible explanation for that phenomenon could be that it
takes longer than the experiment’s duration to form a bond,
whereas the mutual agreement on goals can be established
in a shorter time span.

6.4.1 Open-ended responses

The qualitative response of subjects in the open-ended re-
sponses of subjects in the FLUENCY condition was more
favorable than that of subjects in the REACTIVE condition.

Positive comments in the FLUENCY condition included
subjects reporting to be “highly impressed [with the robot’s]
learning”, and a subject saying that they “had emotional re-
sponses that went from tenderness [. . .] to amusement to re-
spect [. . .] and trust.” And one went so far as to claim that
“[b]y the end of the second sequence, we were good friends
and high-fived mentally after the task was done.” Such pos-
itive comments were rare in the REACTIVE condition.

Several negative comments, in particular with regards
to the robot’s contribution as a team member, were found
throughout the comments of subjects in the REACTIVE con-
dition. These included “The robot was more of an assistance
than an active team member”, and “I felt like I was control-
ling the robot, rather than it being part of a team,” and “[. . . ]
it just felt like a lazy apprentice”. This also reflected on the
overall sense of the team’s accomplishment, in remarks such
as “I’m not sure our team performance ever improved.” In
contrast, subjects in the FLUENCY condition remarked on
the robot’s contribution to the team, and referred to it sev-
eral times as a teammate: “By the end of the first sequence
I realized that he could learn and work as my teammate”,
“my interaction with the robot was not that different than
with a human teammate,” and I sometimes believed [the ro-
bot] a better performer than myself and was impressed at the
rate of improvement we had”. One subject in the FLUENCY
condition said, however, that “I did not perceive it as human
but more as kind of a thing, possibly an animal. I think this
might have to do with the fact that I was asked go give it
short commands similar to the ones given to animals.”

6.4.2 Self-deprecation in the FLUENCY condition

A surprising effect of the experiment was that in the FLU-
ENCY condition we found a high number of self-deprecating
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comments, and comments indicating worry or stress of falli-
ble human performance in relation to the robot’s strong per-
formance. Several subjects in that condition remarked on
stressful feelings that they weren’t performing at an ade-
quate level.

These remarks included “I would essentially forget the
pair of colors I had [memorized]—this slowed me down”,
“The robot is better than me”, “The performance could had
been better if I didn’t make those mistakes”, “[I] worried
that I might slow my teammate down with any mistakes I
might have made”, and even “I am obsolete”. There were no
similar comments in the REACTIVE condition.

While it is beyond the scope of this work to further ex-
plore this aspect of our findings, it should be of interest to
designers in the human-robot interaction field. The preva-
lence of this reaction may indicate a need for humans to feel
more accomplished than the robot they are interacting with.
Maintaining the balance of increased robot responsiveness,
and the intimidation that might result is an overlooked as-
pect of HRI, which these results urge us to consider.

6.4.3 Lexical analysis

We confirmed these anecdotal findings using an independent
qualitative coding of the open question responses. All-in-
all there were 54 comments, 24 by subjects in the REAC-
TIVE condition, and 30 by subjects in the FLUENCY con-
dition. The comments were presented to a coder in random-
ized order and without indication of the condition they be-
longed to. For each comment, and for each category, the
coder was asked to answer whether the comment has that
property. Specifically, subjects in the FLUENCY condition
commented on the robot more positively, and subjects in the
REACTIVE condition commented on the robot more nega-
tively. FLUENCY subjects attributed more human character-
istics to the robot, although there is little difference in the
emotional content of the comments. Subjects in the FLU-
ENCY condition tended both to give more credit to the ro-
bot, and attribute more blame to themselves. Those in the
REACTIVE condition far exceeded the other subjects in
putting blame on the robot. Also, gender attributions, as well
as attributions of intelligence occurred only in the FLU-
ENCY condition, while subjects in the REACTIVE condi-
tions tended to comment on the robot as being unintelligent.
Finally, we did confirm the tendency to self-deprecating
comments as more prevalent in the FLUENCY condition.

7 Conclusion and future work

For robots to be accepted as productive members of human-
robot teams, they must be able to act fluently with a human

partner in real-world situated teamwork scenarios. These ro-
bots must overcome strict turn-taking behavior, which in-
duces delays and inefficiencies, and can cause frustration.
Instead they should mesh their behavior dynamically with
their human counterparts. This is particularly true for a
repetitively practiced joint task, where human teammates
have been shown to expect an increasingly coordinated in-
teraction with the robot, even when not prompted to expect
this behavior (Hoffman and Breazeal 2007).

In this paper, we introduce a novel cognitive architecture
aimed at achieving such fluency in human-robot joint ac-
tion. Based on neuro-psychological findings in humans, we
propose a perceptual symbol system, which uses anticipa-
tory simulation and Hebbian inter-modal reinforcement to
decrease reaction time through top-down biasing of percep-
tual processing along efferent processing pathways.

We present a human subject study evaluating the effects
of our approach, comparing it with a similar system using
only bottom-up processing. We evaluated our system in a
repetitive task in which one human and one robot work to-
gether using distinct actions to achieve a common goal.

From behavioral analysis, we find significant differences
in the task efficiency and fluency between the two condi-
tions. We find the team including the anticipatory robot to
be more efficient in all evaluated scales, and its behavior to
match our previous established fluency metrics, such as hu-
man idle time and robot functional delay. This supports our
hypothesis that top-down anticipatory perceptual simulation
can aid in fluent human-robot teamwork in which a human
and a robot jointly practice a task.

We have also evaluated the relative improvement of the
human and the robot, a hitherto under-addressed metric of
human-robot joint activities. In our experiments, we find a
similar learning curve for the human and the robot team
members, possibly contributing to the human subjects’ sense
of similarity to the robot. We believe that this finding affords
a discussion and additional research relating to the psycho-
logical effects of human-robot co-learning. For example, we
would like to evaluate the bonding effect that result from
faster vs. slower adaptation on the robot’s part. Do humans
generally prefer robots that learn at a similar rate as they
do? Does a faster or a slower learning rate frustrate human
team members? Does artificially matching the robot’s learn-
ing rate to that of a human collaborator contribute to the
human’s sense of likeness or to the bond between human
and robot team members? We leave these questions to fu-
ture work.

From self-report, we find significant differences in a
number of metrics, in particular in the perception of the
team’s fluency, the team’s improvement over time, the ro-
bot’s contribution to the efficiency and fluency, the robot’s
intelligence, and in the robot’s adaptation to the task.
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Fig. 14 Lexical analysis of
subjects’ open-ended
comments. For numerical
results, see Hoffman (2007)

In open questions, we find significant differences in the
subjects’ attitude towards the robot: most notably an in-
creased attribution of human qualities to the robot, such as
gender and intelligence, as well as credit for success. Inter-
estingly, we also find a tendency towards self-deprecation
in subjects collaborating with the anticipatory version of the
robot. This finding, too, affords further research in the area
of self-image of humans acting with adaptive robots. The
detrimental effects of robot efficiency and adaptation have
so far not been sufficiently addressed by the literature. We
plan to further evaluate self-image of humans working with
robots as it relates to the robot’s performance.

A number of further open questions remain.
As the robot becomes more proficient at the task, its

primed actions have an increasing effect compared to

sensory-originating activity. While this enables the robot to
become increasingly automatic, it could also interfere with
the robot’s attention to unexpected events, potentially mak-
ing it too primed, and thus blind to sensory data. In our im-
plementation, we have tuned the system to never completely
ignore sensory input, by setting the simulation/activation
rate so that any motor activity necessitates some degree of
sensory confirmation. Also, in our model, perceptual simu-
lation decays and, if not supported by sensory data, is swiftly
overridden by real-world perception. The learning rate, the
temporal dynamics (i.e. the onset and decay of perceptual
simulation), and the dynamic mixture model of simulated
and real perceptual activation is a fertile ground for explo-
ration, and will be further investigated as part of this re-
search.
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In future research, we would also like to address the role-
dynamics throughout a collaborative session, and measure
the attention given to the robot as it changes throughout the
session. An interesting question would be whether trust in
the robot alters the human partner’s measurable behavior,
resulting in less supervision over the robot, less confirma-
tory nonverbal behavior, and less coordination acts, as we
would expect from humans that trust each other to do a task
correctly. We plan to measure these metrics in follow-up ex-
periments.

In addition, our human subjects’ a-priori notions of ro-
bots seem to have a conflating effect on their subjective eval-
uation of the robot’s traits and performance. We would like
to investigate ways to control for these cultural expectations,
given that our goal is long-term engagement with personal
robots.

Finally, this work has evaluated our system over a sin-
gle session, in which the task was unknown to the robot.
It is valuable to extend the application of the principles set
forth herein over multi-task sessions. In particular, we would
like to explore the transfer of adaptation to identical tasks, to
changing tasks, and to tasks with new human team members.
Also, the application of our framework to known task struc-
tures affords further research. Known structure could feed
the perceptual simulation system as a third subsystem rep-
resenting long-term memory, in addition to the short-term
memory model described herein. Our framework lends it-
self to these extensions, as learned behaviors from one task
could be used in subsequent tasks. That said, the effect it has
on human team members is subject to empirical evaluation.

In conclusion, this work presents steps towards our larger
goal of modeling artificial practice in the context of human-
robot collaborative tasks, and of building robots that can
improve in fluency through repetitive situated practice. We
have approached these goals by proposing a novel compu-
tational model for joint human-robot team practice, and by
evaluating this model in a joint activity study involving un-
trained human subjects.
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