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Cost-Based Anticipatory Action Selection for
Human–Robot Fluency

Guy Hoffman and Cynthia Breazeal

Abstract—A crucial skill for fluent action meshing in human
team activity is a learned and calculated selection of anticipatory
actions. We believe that the same holds for robotic teammates, if
they are to perform in a similarly fluent manner with their human
counterparts. In this work, we describe a model for human–robot
joint action, and propose an adaptive action selection mechanism
for a robotic teammate, which makes anticipatory decisions based
on the confidence of their validity and their relative risk. We con-
duct an analysis of our method, predicting an improvement in task
efficiency compared to a purely reactive process. We then present
results from a study involving untrained human subjects working
with a simulated version of a robot using our system. We show
a significant improvement in best-case task efficiency when com-
pared to a group of users working with a reactive agent, as well as
a significant difference in the perceived commitment of the robot
to the team and its contribution to the team’s fluency and suc-
cess. By way of explanation, we raise a number of fluency metric
hypotheses, and evaluate their significance between the two study
conditions.

Index Terms—Algorithms, anticipatory action selection, fluency,
human factors, human–robot interaction, teamwork.

I. INTRODUCTION

TWO PEOPLE repeatedly performing an activity together
naturally reach a high level of coordination, resulting in

a fluent meshing of their actions. In contrast, human–robot in-
teraction is often structured in a stop-and-go fashion, inducing
delays and following a rigid turn-taking pattern. Aiming to de-
sign robots that are capable peers in human environments, we try
to attain a more fluent meshing of human and machine activity.

In recent years, the cognitive mechanisms of joint action
have received increasing attention [1]. Among other factors,
successful coordinated action has been linked to the formation
of expectations of each partner’s actions by the other and the
subsequent acting on these expectations [2], [3]. We argue that
the same holds for collaborative robots: if they are to go beyond
stop-and-go interaction, agents must take into account not only
past events and current perceived state but also expectations of
their human collaborators.

In this paper, we present an adaptive anticipatory action selec-
tion mechanism for a robotic teammate. We analyze our model
of anticipatory action in a cost-based framework of coordinated
shared-location action, and compare it to a purely reactive agent
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acting within a traditional perception–action loop, demonstrat-
ing a theoretical improvement in joint task efficiency.

We then present results from a study involving untrained hu-
man subjects working with a simulated version of a robot using
our anticipatory system. We show a significant improvement in
best-case task efficiency when compared to users working with
a purely reactive agent. However, we were not able to show this
difference being significant when measuring the mean score
over repetitions. We attribute this, in part, to the small number
of repetitions used in our study.

That said, we are not interested solely in efficiency, but also in
the qualitative notion of fluency in coordinated action meshing,
ultimately leading to more appropriate collaborative behavior.
In a poststudy survey we found a significant difference in the
perceived contribution of the robot to the team’s fluency and suc-
cess, as well as its commitment to the team. Given that there are
no generally accepted measures of teamwork fluency, we raise
three fluency metric hypotheses, and evaluate these between
the two conditions. We find the groups to differ significantly in
two (time between human and robot action, and time spent in
concurrent motion), but not in a third (human idle time).

The remainder of the paper is structured as follows: In
Section II, we briefly describe the cost-based Markov process
in which our agent is set, and, in Section III, we outline a re-
active action-selection mechanism for an agent in this world.
In Section IV, we introduce our adaptive cost-optimizing an-
ticipatory agent and analyze its behavior vis-a-vis a simulated
human teammate. Section V presents and discusses results from
the human subject study; Section VI discusses related work, and
we conclude in Section VII with future research directions.

II. WORLD DESCRIPTION

We model the team fluency problem as a discrete time-based
deterministic decision process including two agents, a robot and
a human, working together on a shared task.

Both robot and human share a common workspace, which
at any time point is in one of a finite number of states ΣW =
{sw

0 , . . . , sw
n }, and is initially in state sw

0 . The agents also have
a number of states ΣH = {sh

0 , . . . , sh
n} (the human’s states) and

ΣR = {sr
0, . . . , s

r
n} (the robot’s states). In our model, the robot

can only perceive the state of the workspace if it is in state
sr
0 (the perceptive state). We denote a full state of the system

sn ≡< sw
i , sh

j , sr
k >, and similarly, Σ = ΣW × ΣH × ΣR .

Human and robot have distinct abilities, described as two
sets of actions, AH = {ah

1 , . . . , ah
k } for the human, and AR =

{ar
1, . . . , a

r
l } for the robot.

T : ((AH ∪ AR ) × Σ) �→ Σ is a transition function that maps
certain state-action pairs to new states. We denote a particular
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Fig. 1. Transition costs between two states as a directed graph.

state-action pair transition in T

τx
i (sk ) = sl ≡< ax

i , sk >�→ sl

meaning that if agent x ∈ {h, r} (human or robot) performed
action i while the world is in state sk , the world would transition
into state sl after applying the action.

A central motivation of our model is to investigate aspects
of time associated with actions of two collaborating agents.
Therefore, state transitions are not atomic, and the decision to
take a particular action does not result in an immediate state
transition. Instead, moving between states takes time, and is
associated with a known discrete cost, which is a function of
the states before and after the action. This cost can be thought
of as the “distance” between states, or, more generally—the
duration it takes to transition between states. We denote the cost
of transitioning between states sk and sl with d(sk , sl).

D :


 ⋃

i∈W,H,R

< Σi × Σi >


 �→ N

Thus when at time t, agent x ∈ {h, r} decides to take action ax
i

on state sk and τx
i (sk ) = sl , the world will be in state sl only at

time t + d(sk , sl). While the other agent may take more actions
during this time, the next time-step agent x will be able to take
another action is t + d(sk , sl). It can be useful to depict the state
transitions as a directed graph, with the nodes representing the
states and the edges the transitions between the states, weighted
by the duration/cost function D (see Fig. 1).

For the sake of simplicity, we will, sometimes, denote
d(sk , sl) as dkl , as indicated in the figure.

Agents cannot change the other agent’s states with their ac-
tions, but they operate on a common workspace. Therefore, our
model is clearly ill-defined with regards to race conditions on
the ΣW state space. There are several possible solutions (such as
the use of semaphores and other synchronization mechanisms).
In this work, for the sake of simplicity, we will assume that
actions that change the workspace are locking with regard to
actions that operate on the common workspace for both agents.
In the implementation of our model described earlier, we solve
this race condition by making all state transitions affecting the
workspace atomic.

A. The Factory World

In our experiments, we use a simulated factory setting (Fig. 2).
The goal of the team is to assemble a cart made of a Body, a

Fig. 2. Simulated factory setting with a human and a robot building carts,
while sharing a workbench (gray circle), but dividing their tasks. The robot
has access to the tools (right and top-left of workbench), whereas the human is
responsible to bring the parts (below the workbench). Top left shows a completed
cart.

Floor, two Axles, and four Wheels. The various parts have par-
ticular ways to be attached to each other—the Body is welded
to the Floor, Axles are riveted to the Floor, and Wheels are
attached to Axles using a wrench of matching color. A com-
ponent is a partially assembled cart segment that includes one
or more individual parts attached to each other, for example,
Axle1 + Body + Floor.

The labor is divided between the human and the robot: the
human has access to the individual parts, and is capable of
carrying them and positioning them on the workbench. The robot
is responsible for fetching the correct tool and applying it to the
currently pertinent component configuration in the workbench.
Each part has a stock location (with an infinite supply of parts),
and each tool has a storage location, to which it has to be returned
for the robot to be able to find it again. The workbench can, at
any one time, contain at most two components.

In the earlier-described framework, the workbench state space
ΣW = Comps2, where Comps is the space of all possible
components.1 In our case, |Comps| = 42, and thus |ΣW | =
42 × 42 = 1764. The robot’s state space includes its position at
one of the four tools’ storage areas or at the workbench, and
whether the robot is holding one of the tools or not. Therefore,
|ΣR | = 25. Similarly, with six kinds of parts, |ΣH | = 49. Thus,
the size of the state-space in this simulation is 2,160,900.

The action-space of the robot is

AR = {Workbench,Welder,Rivet,Wrench1,

Wrench2, P ickUp, PutDown,Use}.
The first five actions are mobility actions, moving to one of
the five locations in the factory. PickUp and PutDown are

1Note that this is not 2|Parts|, since not all parts can be attached to each other,
and some parts can appear multiple times in a component.
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operational only in the tool locations, with the latter only avail-
able at the correct storage location of the currently held tool.
AH is a similar space with two more navigation actions, and
no Use action. To illustrate the state transitions, here are two
examples of transitions brought about by actions in AR (Here,
W is Wrench1, R is RivetGun)

τ r
P ickup(〈sw

i , sh
j , 〈W, ∅〉〉)

= 〈sw
i , sh

j , 〈W,W 〉〉

τ r
U se(〈〈Floor,Body〉, sh

j , 〈Wrkspc,Welder〉〉)

= 〈〈Floor + Body, ∅〉, sh
j , 〈Wrkspc,Welder〉〉

and

τ r
RivetGun (〈sw

i , sh
j , 〈W, ∅〉〉) = 〈sw

i , sh
j , 〈R, ∅〉〉.

The duration cost of a state transition that involves navigation
is the distance between the previous and the new location. The
duration cost for state transitions involving the inventory of an
agent, or changes to the workbench, is 1 in this implementation,
but could, theoretically, be different for each tool.2 The robot
can perceive the state of the workbench only when it is located
in it. Workbench state changes that happen while the robot is in
any other state are not applied to its internal representation.

Moreover, we assume that the robot has a function Φ that maps
the workbench state to the appropriate tool required to bond the
two components on the workbench. For example: φ(〈Floor +
Axle1,Wheel1〉) = Wrench1. This can be a lookup table, or
a decision process. In our implementation, the agents models
the components as having open and closed male and female
attachments to deduct Φ. Also note that some workspace states
do not warrant any tool, because they either have an empty
component, or two components that cannot be attached. We
mark these function values as φ(sw

i ) = ∅.

III. REACTIVE AGENTS

A baseline agent that is purely responsive to its environ-
ment and internal state, can be defined by an action policy
that waits in the workbench when Φ(WorkBench) = ∅, and
fetches tool x, uses it, returns it, and returns to the workbench
when Φ(WorkBench) = x.

The obvious fallacy of this policy occurs when the same tool
is needed twice in a row (which can happen with the wheels and
axles, in the factory domain), resulting in a superfluous sequence
of returning and then fetching the same tool. If the distance be-
tween the workspace and the tool is d, and under the assumption
that the time it takes for the human to bring the next part h is
smaller than 4d + 3, the total cost of this sequence is 6d + 5.

The naı̈ve policy can, therefore, be improved by delaying the
decision to return a tool until the state of the workbench changes.
This prevents the agent from returning a tool before it is certain
that it is not needed again in the next step. We call this policy
conservative tool return. Given the time delay between the two

2For example, welding can take longer than riveting, and picking up the
wrench could be faster than picking up the welder.

Uses

δ =
{

h − (2d + 2), if h > 2d + 2
0, otherwise.

The total cost of the sequence is 2d + 3 + δ. The gain in perfor-
mance is 4d + 2 − δ.

However, it is straightforward to demonstrate that there is a
negative impact of the “conservative tool return” strategy in the
case where the next tool needed is different from the current
tool. Note that the cost effect of conservative tool return is de-
pendent not only on the known world configuration, but also on
the turnaround time of the human action h, a quantity that cannot
be known but only estimated by the robotic agent. Additionally,
the overall expected cost effect is dependent on the probability
distribution on the workbench configuration over time. It, there-
fore, makes sense to discuss an action selection policy based on
these factors, which is the topic of the following section. We will
then frame the two reactive policies discussed here as a subset
of the proposed anticipatory policy.

IV. ANTICIPATORY ACTION SELECTION

As discussed in the introduction, humans are remarkably
adaptive and increasingly effective when performing repeti-
tive trials of an identical task collaborating with a consistent
teammate. The use of educated anticipatory action based on
expectations of each other’s behavior may be a key ingredient
in the achievement of this action fluency. In this section, we
will attempt to adopt this insight in the human–robot interaction
domain within the discussed framework.

A necessary assumption for anticipatory action selection in
our agent is that the human collaborator will follow a roughly
consistent action pattern, i.e., will make similar decisions under
similar circumstances.

The agent, thus, models the workbench as a first-order Markov
Process.3 The probability of the workbench state at time t, σw

t ,
is thus conditional on σw

t−l and denoted as

pw
i|j ≡ Pr(σw

t = si |σw
t−l = sj )

The agent can learn the parameters of this Markov process
using a naı̈ve Bayesian estimate. To do this, the agent keeps
a one-step history of the state transitions of the workbench.
A change from state sj to state si increases the counter ni|j .
Consequently, pw

i|j is computed as

pw
i|j =

ni|j∑|ΣW |
k=1 nk |j

However, in order to estimate the cost of preemptive action, as
described in the following section (which is ill-defined for non-
constructive workbench states), and also to reduce the decision

3A presumably more realistic model would be to view the collaboration as a
hidden Markov model, with the human state transitions being hidden, and the
workbench transitions being the evidence layer of the model. However, since
many of the human’s state transitions do not affect the workbench state, and the
probability of workbench transitions conditional on the human state transitions
P r(σw

t = si |σh
t = sj ) are not independent of σw

t−l , it is unclear whether such
a model would indeed be of value in our domain, and is, therefore, left to future
investigation.
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state space, the robot in our factory domain can alternatively
model the probability of the tool needed based on the previous
state: if Q(x) = {si : φ(si) = x} is the set of workbench states
that warrant tool x, the new probability model learned is now

px|j ≡ Pr(σw
t ∈ Q(x)|σw

t−l = sj ).

We estimate this model as follows: a change from state sj

to state si ∈ Q(x) increases the counter nx|j . Using a Laplace
correction of 1, px|j is, then, estimated by

px|j =
nx|j + 1∑|T ools|

k=1 nk |j + 1
.

A. Action Selection

As the agent only perceives the workbench state (and, there-
fore, information about the transition distribution) when it is
in the workbench state, it makes sense to make decisions in
terms of action sequences. The acquisition of these sequences
is beyond the scope of this paper, but suffice to say that, in our
scenario, the agent needs only to consider action sequences that
begin and terminate while it is in the workbench state.

In the discussed factory domain, we can identify four proto-
sequences (state transitions for the full sequences are presented
in brackets)

1) Pick up a tool and use it

[〈sr
0, ∅〉 → 〈sr

0, x〉].

2) Return a tool and return to workbench

[〈sr
0, x〉 → 〈sr

0, ∅〉].

3) Return a tool, bring a new tool, and use it

[〈sr
0, x〉 → 〈sr

0, y〉].

4) Do nothing and wait

[sr
i → sr

i ].

The action selection process operates as follows: at any time
the robot is in the workbench state, it evaluates the cost of each
of the protosequences. Protosequence 1 needs to be grounded
for each tool and protosequence 3 needs to be grounded for each
of the currently not held tools. Given the probability distribu-
tion, the robot can compute the expected cost for choosing each
of the strategies, and selects a grounded sequence optimizing for
cost. In calculating the expected cost for protosequences 1–3, we
need to assume that ∀i, [h < 2d0i ]. Also note that the cost in our
calculations includes performing the correct action afterward.
Denoting the current state of the workbench sj , and the work-
bench position 0, the expected duration costs of protosequence
1–3 are

Cost1(x) = px|j (2d0x + 2)

+
∑
y 
=x

[py |j (3d0x + dxy + d0y + 4)]

Cost2(x) =
|T ools|∑

y=1

[pk |j (2d0x + 2d0y + 3)]

Cost3(x, y) = py |j (d0x + dxy + dy0 + 3)

+
∑
z 
=y

[pz |j (d0x +dxy +2dy0+dyz +dz0 + 5)].

Action sequence 4 is unique insofar as it is dependent not
only on the state transitions in the workbench but also on the be-
havior of the human teammate. If the human’s next workbench-
changing action is at time t + h, the cost of waiting is the cost
of performing the correct action with complete confidence, plus
h. For the case that the robot is holding a tool z

Cost4 = pz |j +
∑
y 
=z

[py |j (d0z + dzy + dy0 + 3)] + h.

For the case that the robot is not holding a tool

Cost4 =
|T ools|∑

y=1

[py |j (2d0y + 2)] + h.

However, since h is not directly accessible to the robotic
agent, its estimate can be used as a confidence parameter, ad-
justing between an aggressively anticipatory behavior and a
more cautious approach (see also the following text).

Using this notation, we can now rephrase the previously dis-
cussed reactive agent behaviors. The naı̈ve agent’s policy can
be viewed as selecting protosequence 2 whenever it is holding a
tool in the workbench, and selecting protosequence 1 whenever
a tool is warranted. The agent employing conservative tool re-
turn can be rephrased as selecting protosequence 4 whenever no
tool is warranted, and selecting protosequence 1 or 3 if a work-
bench state warrants a tool. This rephrasing enables comparison
between the different policies, as described in the following
section.

B. Analysis

Fig. 3(a) and (b) demonstrates the adaptation of cost-
optimizing anticipatory action vis-a-vis a theoretical human
teammate. In these figures, the factory layout is as depicted in
Fig. 2, the human’s action is simulated to be constant given a
specific configuration, and the agent is using h = 250. Fig. 3(a)
depicts the expected cost for the five available action sequences
when the robot perceives the Floor in the workbench, holding
nothing, over 31 trials in which the human is simulated to
consistently bring the Body in this situation. We can see that
Sequence 4 (waiting) is the cost-optimizing action for trials 1–4,
and that getting the Welder becomes the optimal anticipatory
action from trial 5 onward. In contrast, Fig. 3(b) shows that when
holding the RivetGun and perceiving Floor + Body + Axle2
(with a human consistently bringing Wheel3 to the workbench),
Sequence 2—returning the RivetGun—becomes optimal start-
ing from the second trial. This difference becomes apparent
considering the location of the Wrench on the opposite side
of the workbench, making it considerably more expensive to
wait, the more confident the robot gets that the Wrench is
needed next. It it interesting to note that due to the particular
tool arrangement, returning the RivetGun and prefetching the
Wrench does not become cost-optimizing even after 31 trials.
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Fig. 3. Cost evaluation with a simulated consistent human teammate. In (a),
the robot is holding nothing and perceiving the F loor, with a human simulated
to always bring the Body next; in (b), the robot is holding the RivetGun and
perceiving F loor + Body + Axle2, with a human simulated to always bring
W heel3.

While it does become more optimal than waiting after eight
consistent trials, the cost of an erroneous prediction, even as it
becomes extremely unlikely, is still too high, resulting in a pref-
erence for Sequence 2 over Sequence 3. Note that this does not
hold for other decision junctions. For example, while holding
the Welder with a consistent need for the RivetGun, prefetch-
ing it on the way back from the Welder location becomes
cost-optimizing on the sixth trial (not shown in the figure).

Using the analysis in the previous section, we can now com-
pare the reactive agents to our proposed method. In the case
described in Fig. 3(a), our algorithm is equal to the reactive
agents (equivalent to Sequence 4) in trials 1–4, and outper-
forms them increasingly as the amount of evidence increases.
In the case described in Fig. 3(b), the naı̈ve reactive agent is
equivalent to Sequence 2, slightly outperforming our method
in the first trial, and then matching it, while the conservative

Fig. 4. Change in per-cart construction time with an expert consistent human
in a pilot experiment vis-a-vis (left) the reactive agent and (right) the adaptive
anticipatory agent.

Fig. 5. Effect of an inconsistent human teammate: Graph shows perceiving the
F loor with a simulated human teammate producing the Body with a probability
of 70% and an Axle with a probability of 30%.

tool return agent (equivalent to Sequence 4) chooses a more
costly approach than our method from trial 2 onward. Generally
speaking, using h = 250 in the factory scenario, we usually see
the agent outperforming the reactive agents within two trials,
and converging into full anticipatory behavior within 10 trials.

In an actual pilot run vis-a-vis a real-life, experienced, and
consistent human teammate, we can see evidence to that effect.
Whereas the reactive agent with conservative tool return remains
constant at a construction cost4 of circa 800, the anticipatory
adaptive agent shows a significant improvement after the first
trial and again at the sixth trial, finally settling at a lower per-cart
construction cost of circa 650 (see Fig. 4).

Fig. 5 shows the adaptation of the cost-function vis-a-vis a
theoretical inconsistent human teammate. In this case, given
the Floor in the workbench, the simulated human action is

4The cost units, when measured with a human teammate, are in simulation
frames, running at 30 frames/s.
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Fig. 6. Cost analysis perceiving the F loor with a simulated consistent human
teammate producing the Body, but varying the estimated human turnaround
cost h.

a random variable with a fixed probability distribution, bring-
ing the Body with a probability of 70%, and an Axle with a
probability of 30%. The result is that waiting for the human’s
next move remains cost-optimizing for 12 iterations, delaying
the anticipatory behavior of the agent and resulting in slower
convergence into a fluent and efficient activity pattern.

A final note regarding the risk-taking parameter h, which we
defined as the estimated time the human’s turn takes: varying
h affects the relative optimality of Sequence 4 (waiting for the
human). Lowering h significantly corresponds to an expectation
that the human returns very quickly with the next part, result-
ing in a risk-averse policy (Fig. 6). At the junction depicted in
Fig. 3(a), for example, lowering h to 10 will render the decision
function equivalent to the “conservative tool return” reactive
agent discussed earlier. Setting h = 500 results in an agent per-
forming anticipatory actions as soon as trial 1. Fixing h at 100
results in taking the correct anticipatory action at trial 16, instead
of trial 5.

Ideally, h should be specific per state, as well as learned over
time as the agent collects more data regarding the turnaround
time of the human teammate.

V. HUMAN SUBJECT STUDY

To further investigate the effect of adaptive anticipatory action
selection, we conducted a human subject study. We expected
to see an increase in efficiency as predicted by the theoretical
analysis, as well as an increase in the perceived contribution of
the robot to the team’s fluency and success.

A. Experimental Design

We recruited 32 participants (15 female) from the Mas-
sachusetts Institute of Technology (MIT) community through
email solicitation and posters. Participants arrived at our labo-
ratory and were arbitrarily assigned to one of two experiment

TABLE I
TOTAL CART COMPLETION METRICS FOR UNTRAINED HUMAN SUBJECTS IN

THE REACTIVE (GROUP A) AND ADAPTIVE ANTICIPATORY

CONDITION (GROUP B).

conditions. Subjects in Group A interacted with a reactive agent
using the “conservative tool return” policy; those in Group B
interacted with an anticipatory agent.

All participants (from both groups) received identical instruc-
tions, which described the factory setup as a video game, and
were told that the human–robot team’s goal is to build 10 carts,
with “each team member [having] their own role in this joint
effort.” Also, subjects were instructed to “build carts in the least
amount of time.” The instructions were phrased so as to im-
ply the importance of the team as a joint performing entity. To
control for instruction bias, neither group was told whether the
robot will adapt to their behavior. All participants were allowed
to practice with the system before beginning the experiment.

The experimental protocol was reviewed and approved by the
Institutional Review Board of the MIT.

B. Results

Of the participants, five had to be eliminated from the study.
Two violated the experimental protocol, one experienced a soft-
ware crash, one was significantly inattentive, resulting in scat-
tered behavior, and, for one subject, the logging functionality
was not working, resulting in a loss of data. This left us with 27
subjects, 14 in Group A and 13 in Group B. All 32 completed
a poststudy survey regarding their experience.

Table I shows total cart construction measures for the popu-
lation. Cost units are in simulation frames at 30 frames/s.

Each subject’s best performance is significantly better at a
confidence level of 98% in the adaptive anticipatory case com-
pared to the reactive case. Measuring the mean construction
time over ten trials, as well as the time for construction of
the tenth cart, we find the subjects in the anticipatory case to
be better (at p < 0.1), but not significantly at a 95% confi-
dence level. We believe that this is, in part, due to the fact
that several subjects in Group B took a number of inconsis-
tent trials to identify that the robot was adaptive, leading to
a convergence to a stable construction pattern only in the last
few carts (see also Section V-D.2). According to this hypoth-
esis, both the mean and the final cart construction cost would
be lower in the anticipatory case if there were more trial runs
per subject. This claim needs to be investigated in subsequent
research.

1) Survey: In the postexperimental survey, we found signif-
icant differences between participants in the two groups . On a
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seven-point Likert scale, subjects in the anticipatory action agent
“Group B” selected a significantly higher mark than those in
the reactive agent “Group A” when asked whether:

1) “The robot’s performance was an important contribution
to the success of the team.”:

Group A : 4.88; Group B : 6.38; T (30) = 2.87;

p < 0.01.

2) “The robot contributed to the fluency of the interaction.”:

Group A : 4.125; Group B : 5.6875; T (30) = 2.99;

p < 0.01.

3) “It felt like the robot was committed to the success of the
team.”:

Group A : 2.8; Group B : 5.0;T (30) = 3.21;

p < 0.005.

The two groups did not differ significantly when subjects
were asked whether they themselves were “committed to the
success of the team,” or whether they “trusted the robot to do
the right thing at the right time.” Both groups averaged between
6 and 7 on these two questions.

C. Measures of Fluency

In sum, we found significant differences between the two
conditions in the subjects’ perception of fluency as well as
in their perception of the robot’s commitment and contribu-
tion to the team’s success. This conclusion is further embel-
lished by the qualitative findings described in Section V-D
later. At the same time, the mean (and convergent) task ef-
ficiency of the team was not significantly different between
the conditions. This contradictory phenomenon could suggest
that the notion of fluency, commitment, and appropriate team-
work are separate from those of simple task-time efficiency.
If this is the case, we would like to discern possible quantita-
tively measurable causes for the above-mentioned perceptual
differences.

However, while there is a large body of work measuring ver-
bal fluency, there are no generally accepted measures of fluency
in shared-location joint action, even for human teams. We, there-
fore, propose three fluency metric hypotheses, and compare the
mean performance of the two groups along these measures in a
posthoc analysis of our study.

1) Hypothesis I: Concurrent motion—In postexperiment
interviews, some of our participants noted a sense that the
team was well synchronized when “both team members
were constantly in motion.” We tested the hypothesis that
the amount of human–robot concurrent motion was differ-
ent between the anticipatory and the reactive condition. To
do so, we measured the percentage of frames within each
trial in which both human and robot were in motion (i.e., in
transition between two location-based internal states), and,
indeed, found those to be significantly different between
the two groups (A : 0.227; B : 0.322;T (25) = 3.11;
p < 0.005). Fig. 7(a) shows the mean percentage of
concurrent motion for each of the 10 trials, averaged over

Fig. 7. Three measures of fluency per cart over ten trials, averaged over study
groups A (reactive) and B (anticipatory). (a) percentage of concurrent motion
within trial; (b) percentage of human idle time; (c) aggregate time between
human P utDown to robot Use delay.
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subjects in each group. The graph shows that while the
percentage of concurrent motion is improving for both
groups, it does so at a higher rate in the anticipatory
action condition.

2) Hypothesis II: Human idle time—Our second hypothesis
for a measure of fluency is the amount of time the human
spent waiting for the robot. We postulated that if the human
was to spend much time waiting, it would feel like the
team was not working fluently. However, measuring the
percentage of frames in which the human waiting (i.e., not
doing anything, and not in transition between two location-
based states), we found no significant difference between
the two groups [Fig. 7(b)]. This was true for both the
mean and the convergent human idle time. Both groups
decreased the human waiting time at an approximately
equal rate, and with similar results.

3) Hypothesis III: Functional delay—We denote our third
hypothesis “functional delay,” i.e., we postulate that
the amount of time passing between the human’s ac-
tion and the robot’s consequent action was different be-
tween the two conditions. To test this, we measured
the time between the human’s PutDown action and
the robot’s subsequent Use action. We found this mea-
sure to be significantly lower for Group B(A : 436.78;
B : 310.64;T (25) = 5.04; p < 0.001), and more decid-
edly so for the second half of each subject’s trial sequence,
after the robot has adapted to the human’s construction pat-
tern (A : 432.07; B : 205.08;T (25) = 6.28; p < 0.001)
[(Fig. 7(C))]. In the reactive case, there is virtually no
change across trials.

While not ruling out additional factors, this evidence points in
a promising direction with regards to possible quantitative mea-
sures affecting fluency in human–robot joint action. However,
these findings are only initial and lay the groundwork for future
research, in which each of these hypotheses needs to be sepa-
rately controlled for, and evaluated for its effect on the human
team member’s perception of the robot’s fluency, commitment,
and task contribution.

D. Discussion

The open-ended segment of the postexperiment questionnaire
reveals a qualitative difference between the two conditions. Sev-
eral subjects in Group B noticed the anticipatory behavior and
remarked on it positively, e.g., “it was nice when [the robot]
anticipated my next move,” or “[the] robot’s anticipation of
my actions was impressive and exciting.” Negative remarks in
Group B usually referred to a desire for even more anticipatory
behavior, such as “[the robot] could do better by getting the first
tool before/while I take the first part, because it was a consistent
process and could be predicted,” or “the robot should watch
what I’m grabbing in advance.”

Somewhat surprisingly, many subjects in Group A—without
having been informed that the study was related to anticipatory
action or that the robot was meant to be adaptive—noted with
frustration that the robot did not predict their actions. We view
this tendency as indicative of the fact that adaptiveness and an-

ticipatory action are natural expectations of a robotic teammate
in a repetitive task. Quotes from Group A included: “I was hop-
ing that the robot would learn to anticipate more,” “I expected
more predictive behavior from the robot,” “[the] robot was not
able to anticipate [the] human’s actions,” and “it might have
been more efficient if after a few carts the robot could pick up
on the order in which i was bringing in the parts and be prepared
with the equipment to join it.”

Group A’s positive comments regarding the robot’s perfor-
mance were limited to remarks shaped by a low level of ex-
pectation from the agent: “The robot seemed to do what was
expected,” “the robot did not mess up,” and “the robot was
highly responsive and never let the human down with its pre-
dictability,” were representative responses in this condition.

1) Notions of Teamwork: It is interesting to note that several
subjects in Group A noted that the team felt “lopsided,” that
“the human was the one who strategized, the robot just sat
there,” that the human “was more important than the robot,” and
that “the team’s performance was highly dependent on human
innovation.” Subjects in this group concluded that “the robot
seemed more like an assembly tool than a team member,” that
they “didn’t see the robot as a team player,” that the robot was
used “as a tool,” and one subject said that they “didn’t get a
sense that the robot really cared about the success of the team.”
In contrast, in Group B, only one subject noted that they “felt
that the success or failure of the task was [their] responsibility.”
Conversely, one other stated that they “trusted [the robot] more
over time, as it seemed to anticipate what [they were] going to
do.” The rest of the subjects in Group B did not address the
balance of the team, the issue of trust, or that of commitment,
in any way.

2) Effect of Repetition Size: As noted in Section V-B, we
believe that the relatively minor improvement in mean task effi-
ciency through anticipatory action is related to the small number
of repeating trials in the experiment. Appraisal of server logs,
as well as user testimony, reveals that, in many cases, subjects
experimented with various construction strategies in the first
few runs, which caused the Bayesian model to converge more
slowly. This seemed to be particularly true when subjects noticed
that the robot changed its behavior, causing them to experiment
with different construction sequences in an attempt to reveal
the robot’s modus operandi. One reason for this behavior was
the experiment’s insistence on identical instructions for both
groups, not revealing that the robot would adapt to the human’s
consistent behavior. Several subjects explicitly noted that the
team would have performed better had they known in advance
that the robot learned to anticipate their actions. Another possi-
ble way to counter this effect would be to discount the learning
over time (see also Section VII).

3) Effect of “Best Score” Indicator: We also believe that
the display of the game’s all-time “Best Score” in the user
interface was detrimental to the experiment as it might have
caused subjects to experiment with different strategies instead
of forming a consistent behavior pattern. Originally intended to
motivate subjects to faster performance, the exceedingly good
record time (only possible with a well-adapted agent) provoked
subjects to question their strategy attaining a significantly worse
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score, and, subsequently, to change it several times over the
course of the experiment.

VI. RELATED WORK

Most work related to joint action—whether in philosophy,
psychology, or artificial intelligence—has been concerned with
a goal-oriented view of the problem, paying little attention to
the quality of action meshing and fluency of teamwork, both
as it is perceived by the team members, and as it affects the
quantitative measures of the task.

In this body of work, joint action is usually described as
solving a problem where the participants share the same goal
and a common plan of execution. Grosz pointed out, in this
context, that collaborative plans do not reduce to the sum of the
individual plans, but consist of an interplay of actions that can
only be understood as part of the joint activity [4].

In Bratman’s detailed analysis of shared cooperative activity,
he defines certain prerequisites for an activity to be considered
shared and cooperative [5]. He stresses the importance of mu-
tual responsiveness, commitment to the joint activity, and com-
mitment to mutual support. Supporting Bratman’s guidelines,
Cohen and Levesque propose a formal approach to building ar-
tificial collaborative agents [6]. Their notion of joint intention
is viewed not only as a persistent commitment of the team to
a shared goal, but also implies a commitment on part of all its
members to a mutual belief about the state of the goal. These
principles have been used in a number of human–robot team-
work architectures [7], [8].

Much work has been done in the field of discourse theory,
investigating discourse as a collaborative activity. Grosz and
Sidner have analyzed the structure of discourse and, subse-
quently, modeled shared plans as a separate extension, rather
than a composition of simple, single-agent plans [9]. Later work
has further elaborated the workings of collaborative discourse,
in terms of plans, beliefs, goals, and actions (e.g., [10], [11]).
Collaborative discourse systems have been developed and im-
plemented on screen-based and robotic dialog systems, taking
into account both the verbal and the nonverbal aspects of dis-
course (e.g., [12], [13]). Still, the question of fluency in ac-
tion meshing has not been part of this corpus. Moreover, as
these works focused mainly on linguistic dialog, they have not
addressed the case of nonverbal shared-location teamwork, or
the improvement thereof through repetitive joint execution of
a task.

Human–robot teamwork has also remained mostly in the
turn-taking domain. Some have studied a robotic arm assist-
ing a human in an assembly task [14]. Their work addressed
issues of vision and task representation, but does not investigate
joint adaptation, and does not address the timing issue. Other
works study human–robot collaboration with an emphasis on
dialog and control, aimed primarily at teleoperation [15], [16].
Some frame human–robot collaboration in the context of mixed-
initiative control and shared autonomy, arbitrating between the
robot’s autonomy and direct human control, but also fail to ad-
dress the question of shared-location fluency [17], [18].

Some work in shared-location human–robot collaboration has
been concerned with the mechanical coordination of robots in
shared tasks with humans (e.g., [19]). This work is predomi-
nantly concerned with single-action control and safety issues.

We have previously presented work in shared-location
human–robot teamwork, investigating the role of nonverbal be-
havior on teamwork [7], [20]. While this task-level work in-
cluded turn-taking and joint plans, anticipatory action and flu-
ency have not been addressed.

Timing and synchronization have been reviewed on the
motor level in the context of a human–robot synchronized
tapping problem [21]. Anticipatory action, without relation to
a human collaborator, has been investigated in robot navigation
work, e.g., [22].

VII. CONCLUSION

We have presented work investigating the effect of adaptive
anticipatory action on the efficiency and fluency of action in
human–robot teamwork. Through this, we hope to initiate an
interest in the question of shared-location action timing and
fluency.

In the work contained herein, we introduced a framework for
evaluating shared human–robot fluency, and have presented a
cost-based anticipatory action selection mechanism. We showed
initial results on both the theoretical analysis of this method and
its effect on untrained humans, showing significant differences
in the subject’s perception of the robot’s fluency, commitment,
and contribution, while showing only a small difference in mean
and convergent task efficiency. In order to explain this discrep-
ancy, as well as quantitatively evaluate the notion of fluency, we
proposed three fluency metric hypotheses and compared these
between conditions, finding significant differences along two of
these metrics.

Several improvements to our method present themselves: in
the discussed framework, the robot has no knowledge of the
structure of the task. Domain-specific knowledge can decrease
the action space at each decision point and fortify the accuracy
of the probabilities of subsequent states.

We believe that our system can also be made more robust
by introducing a discount factor in the learned state transition
distribution, making more recent moves by the human teammate
more salient to the robot.

Furthermore, the estimate of the human’s turnaround time h
should be state-specific and could be learned by the robot during
the collaboration.

In future work, we would like to evaluate the relative
effect achieved by the state transition distribution learning, as
opposed to the cost analysis during action selection. Also, the
scalability of our method should be evaluated by increasing
task complexity.

Additionally, the effects of anticipatory action vis-a-vis an
expert—instead of a naı̈ve—human teammate, is of interest, as
is a controlled evaluation of the effects of the proposed fluency
metrics on the efficiency of the task and the perceived fluency
and commitment of the robot.
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Finally, this anticipatory framework is now being imple-
mented on a physical robot and we are currently conducting
studies evaluating the effects of our method on human–robot
fluency in a task involving a human–robot hybrid team. Through
this ongoing research, we hope to evaluate the applicability of
our model to real-life human–robot teamwork applications.
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