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Evaluating Fluency in Human–Robot Collaboration
Guy Hoffman , Member, IEEE

Abstract—Collaborative fluency is the coordinated meshing of
joint activities between members of a well-synchronized team. In
recent years, researchers in human–robot collaboration have been
developing robots to work alongside humans aiming not only at task
efficiency, but also at human–robot fluency. As part of this effort, we
have developed a number of metrics to evaluate the level of fluency
in human–robot shared-location teamwork. While these metrics
are being used in existing research, there has been no systematic
discussion on how to measure fluency and how the commonly used
metrics perform and compare. In this paper, we codify subjective
and objective human–robot fluency metrics, provide an analytical
model for four objective metrics, and assess their dynamics in a
turn-taking framework. We also report on a user study linking
objective and subjective fluency metrics and survey recent use of
these metrics in the literature.

Index Terms—Artificial intelligence, computational and artifi-
cial intelligence, cooperative systems, human-robot interaction, in-
telligent robots, intelligent systems, man-machine systems, systems,
man, cybernetics, user interfaces.

I. INTRODUCTION

WHEN humans collaborate on a shared activity, and espe-
cially when they are accustomed to the task and to each

other, they can reach a high level of coordination, resulting in
a well-synchronized meshing of their actions. Their timing is
precise and efficient, they alter their plans and actions appropri-
ately and dynamically, and this behavior emerges often without
exchanging much verbal information.

We denote this quality of interaction the fluency of the shared
activity. With the aim of using robots in the workforce, we are in-
terested in how robotic teammates could similarly perform more
fluently with their human counterparts. This paper provides tools
to evaluate the level of fluency in a human–robot shared activity.

Fluency in human–robot collaboration has garnered interest
over the past several years, as a large portion of the human–robot
interaction (HRI) literature is working toward computational
models of collaboration (e.g., [1]–[3]; for a survey, see [4]). Nev-
ertheless, the majority of human–robot collaborative systems are
structured in a stop-and-go fashion, following command and re-
sponse patterns, and holding little of the fluent quality that is
part of a satisfying collaboration.

A fluent teammate evokes appreciation and confidence. If
robotic teammates are to be widely integrated in a variety
of workplaces to collaborate with nonexpert humans, their
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acceptance may depend on the fluent coordination of their ac-
tions with that of their human counterparts.

The goal of this paper is to set the stage for a commonly ac-
cepted toolkit to evaluate fluency in human–robot collaboration.
This could help benchmark advances in human–robot collabo-
ration and lead to better-designed robotic teammates.

A. Fluency Metrics in Human–Robot Collaboration Research

Collaborative fluency metrics were introduced by the author
and collaborators in the context of an anticipatory controller for
shared-workspace Markov decision processes [5]. We noted that
even in cases where task efficiency was not improved, people’s
sense of fluency was increased when the robot anticipated their
actions. This finding suggested that fluency is a separate con-
struct that does not simply track efficiency. Further investigation
revealed differences in a number of objective task metrics that
could explain this discrepancy.

In subsequent years, other researchers have used the proposed
fluency metrics to evaluate aspects of human–robot collabora-
tion. For example, Cakmak et al. have measured fluency of han-
dovers from a robot to a human [6], Chao and Thomaz measured
fluency to evaluate a multimodal turn-taking system based on
timed Petri Nets [7], and Nikolaidis and Shah used fluency as a
criterion to evaluate a system of human–robot cross training [8].

A survey of these works, including a list of metrics used thus
far, was presented at the 2013 Robotics: Science and Systems
Workshop on Human–Robot Collaboration [9]. However, that
paper merely included a list of metrics, without further analysis,
comparison, or in-depth discussion. In the past five years, inter-
est in human–robot fluency has grown further, as evidenced by
the recurrent use of some of the metrics listed in [9], detailed in
the literature review in Section VII.

Given this growing interest, it makes sense to consider which
of these metrics are most useful and to work toward agreed
benchmarks for human–robot collaborative fluency. This paper
is the first attempt to systematically present, map, and validate
the measurement of fluency in human–robot collaboration. Its
goals are threefold: to provide an archival inventory of subjec-
tive and objective fluency metrics, to suggest a first theoretical
analysis of objective fluency metrics, and to systematically
investigate the relationship between subjective and objective
fluency metrics.

Following standard psychometric practice, we distinguish be-
tween two types of fluency metrics for human–robot collabora-
tion: subjective metrics, measuring people’s perception of the
fluency of an interaction and related qualities of the robot, and
objective metrics, which quantitatively estimate the degree of
fluency in a given interaction.
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Fig. 1. Subjective fluency metric scales and items used in our studies. Cronbach’s α is reported as measured in [10]. (R) indicates reverse scale.

II. SUBJECTIVE FLUENCY METRICS

Subjective metrics include both direct measures of fluency
that people attach to a collaboration and downstream outcomes
of the perceived fluency, such as the trust human collaborators
put in the robot, the perceived contribution of the robot, its posi-
tive teammate traits, or the human’s sense that the robot is com-
mitted to the team.

In a number of human-subject studies, we and others have
used questionnaires to rate agreement with fluency notions, in-
cluding both single statements and composites of indicators re-
lated to the same measure. The list of questions used in our
research is detailed in [9] and brought here in summary format
alone in Fig. 1. We report on Cronbach’s α for internal validity
for each composite scale, as it was measured in [10]. Researchers
have used additional subjective metrics in the past years along-
side the measures presented here. We list those in detail in the
survey in Section VII.

The scales in Fig. 1 include a three-item scale evaluating flu-
ency directly (1) and six possible downstream outcomes of col-
laborative fluency (2–7). Scale 6 is an adaptation of an exist-
ing instrument, the “Working Alliance Inventory (WAI)” [11],
adapted to human–robot teamwork.

III. OBJECTIVE FLUENCY METRICS

While subjective metrics measure the sense of fluency per-
ceived by a human in a human–robot team, it is also useful to
codify objective measures. If we could reliably tie these metrics
to the perceived fluency, they could serve as common bench-
marks for evaluation. Such numerical metrics could also be used
by machine learning or other optimization algorithms as part of
their cost and reward functions.

This paper discusses four objective metrics that have been
used in the context of human–robot fluency. Three of them
were originally proposed in [5]: the percentage of concurrent

activity (C-ACT), the human’s idle time (H-IDLE), and the
robot’s functional delay (F-DEL). Later work added a fourth
metric: the robot’s idle time (R-IDLE).

These metrics were designed with some generality in mind
and are agnostic to the specific content of the collaborative acts,
relating only to periods of activity. Both the human and the robot
are modeled as either active or inactive.

That said, the metrics were developed in a specific collabo-
rative context, in which a human and a robot bring objects to
a shared workspace and operate on them. These metrics were
also evaluated later in the context of a repetitive handover task.
While these are common human–robot collaboration scenarios,
their formulation makes assumptions about the task that may
not hold for other kinds of collaborative activities. For example,
we make a simplifying assumption that the start and end time of
the whole task is identical for both agents. Another assumption
is that the team is made up of one human and one robot. The
discussed metrics also do not cover certain aspects of coopera-
tive motion and physically coupled collaboration. Other metrics
may thus be more appropriate for different kinds of collaborative
scenarios. These metrics include total task time, smoothness of
trajectory features, or other temporal measures such as recur-
rence quantification metrics.

In the following section, we provide a description and moti-
vation for the four metrics described above, along with an initial
discussion of considerations when using these metrics.

A. Human Idle Time

This measure corresponds to the percentage of the total task
time that the human was not active. Generally, humans have
faster perceptual processing and more dexterous and faster ma-
nipulation and locomotion capabilities than the robot. Therefore,
the human is often waiting for the robot to complete an action
in order for them to perform the next step of the collaboration.
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We postulate that H-IDLE relates to the subjective sense of
fluency because it can be perceived as boredom, time wasted, or
an imbalance between team members.

B. Robot Idle Time

Symmetrically, this measure corresponds to the percentage of
the total task time that the robot was not perceivably active. R-
IDLE can occur when the robot waits for input from the human,
is processing input, is computing a decision, is waiting for addi-
tional sensory evidence, or is waiting for the human to complete
an action.

Note that this measure could be interpreted in two ways, as
the robot’s apparent inactivity can be due to one of two cases:
The robot could appear inactive to the human, but be internally
active, for example, while processing data; conversely, the robot
could be truly inactive, for example, when it is waiting for the
human to complete an action. In the first case, the R-IDLE could
increase at the same time that the H-IDLE increases and would
be “dead time” in the collaboration. In the latter case, the R-IDLE
increases while the human is active and might not be noticed by
the human. Authors could interpret the R-IDLE to include or
not include the robot’s internally active, but seemingly inactive,
time. In addition, the robot could mitigate its perceived idle time
during processing by communicating its internal processing, as
suggested in a number of HRI projects [12], [13].

We hypothesize that R-IDLE relates to the subjective sense
of fluency because it can be perceived as a problem in the team
coordination, be viewed as an inefficient use of the robot’s re-
sources, reflect poorly on the robot as a teammate, and indicate
an imbalance between team members.

C. Concurrent Activity

While the previous two measures were computed on an indi-
vidual agent level, this measure relates to both agents simultane-
ously and corresponds to the percentage of time out of the total
task time, during which both agents have been active concur-
rently. In other words, C-ACT corresponds to the rate of action
overlap between the agents.

Similar to the R-IDLE measure, C-ACT is also tied to the per-
ceived activity of the robot and can be interpreted as including
or excluding times, during which the robot is internally active,
but seemingly inactive. It is also nontrivially related to the hu-
man’s attention to the robot’s level of activity. The human can
dedicate more attention to the robot’s activity while they are in-
active, but conversely might be more sensitive to a robot being
inactive while the human is active and “doing their part” of the
collaboration.

We hypothesize that a high level of C-ACT is related to a
subjective sense of fluency, as it could be seen as an indication
for the team being well synchronized, the team members being
similar to each other, and the work balance being fair.

D. Functional Delay

The fourth measure relates to the delay experienced by the
agents immediately after completing an activity, as incurred by

their teammate. F-DEL is defined as the accumulated time, as
a ratio of the total task time, between the completion of one
agent’s action and the beginning of the other agent’s action.
F-DEL can be calculated for both agents together or for each
agent separately. Realistically, human F-DEL is often negligible,
making the total F-DEL roughly equal to that imposed by the
robot.

F-DEL can be negative when actions are overlapping. Counter
to intuition, the F-DEL ratio can also be larger than 1, meaning
that the accumulated delay is longer than the total task time.
This occurs if an agent completes a number of actions without
response, each starting a “timer” on the F-DEL. F-DELs can,
thus, be overlapping and accumulative.

We hypothesize that a low level of F-DEL is related to the
subjective perception of human–robot fluency, as it indicates an
efficient use of team members’ time and a sense that the interface
points between their activities are smooth and precise. As the
human has just completed an action, we also postulate that there
is heightened saliency to the robot’s F-DEL. The importance of
F-DEL is highly dependent on the nature of the collaboration. In
turn-taking scenarios where an agent needs to wait for the other
agents’ action, this metric may be more salient than in scenarios
where both agents mostly operate simultaneously.

E. Interaction Between Objective Metrics

The four metrics described above are interrelated, as they are
all a function of the amount and timing of each agent’s action.
However, depending on the task, their dynamics along a col-
laborative period can be intricate, with one measure improving
while another regresses. To illustrate this effect, Fig. 2 presents
the interplay between the various measures in four common HRI
scenarios: strict turn-taking with no processing delay, strict turn-
taking with robot processing delay, robot processing delay with
human anticipatory action, and fixed robot cycles with erratic
human behavior.

While these examples are anecdotal, they illustrate that the
four metrics are not trivially interchangeable. Between exam-
ples, H-IDLE and R-IDLE are similar, while CONC and F-DEL
change independently. In real human–robot collaborations with
more than three action cycles and varying timing parameters, we
can expect more complex interrelations between the metrics, as
discussed in the rest of this paper.

IV. MINIMAL TURN-TAKING MODEL

To further explore the relationship between these objective
metrics, we can look at a minimal model that captures some of
the dynamics of a turn-taking human–robot collaboration.

In this model, we define a task instance as a tuple < H,R >
over an arbitrary time unit, with

H ≡ {hi}ni=1 ≡ {(shi, dhi)}ni=1 (1)

being the sequence of n human activity periods. Period i is de-
noted as hi, which is a pair starting at shi and lasting dhi. Sim-
ilarly, we can denote the robot’s actions

R ≡ {ri}mi=1 ≡ {(sri, dri)}mi=1. (2)
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Fig. 2. Objective fluency metrics in four prototypical scenarios. The top sections indicate the agents’ actions. From left to right: (a) Strict turn-taking, initiated
by the human; each action is immediately followed by the next action of the other teammate. (b) Strict turn-taking, initiated by the human, but with some fixed
processing delay on the robot’s part, following fully completed human actions. (c) Fixed robot processing delay in a situation in which the human can start their
action, while the robot is still working on its last action. (d) Fixed robot cycle with erratic human activity.

Without loss of generalization, the human starts the first activity
at time t = 0 without any prior robot activity. The total task time
T follows from the above definitions as

T = max(shn + dhn, srm + drm). (3)

In Example (a) in Fig. 2, this would correspond to

H = {(0, 5), (10, 5), (20, 5)}, n = 3 (4)

R = {(5, 5), (15, 5)}, m = 2. (5)

Given this model, we can analytically derive the following
metric values. These can serve as an estimate of an idealized
collaboration for benchmarking or prediction purposes

H− IDLE = 1− 1

T

n∑

i=1

dhi (6)

R− IDLE = 1− 1

T

m∑

i=1

dri (7)

C− ACT =
1

T

[
max(0, sh1 + dh1 − sr1) (8)

+
n∑

i=2

(
max(0, sri−1 + dri−1 − shi)

+ max(0, shi + dhi − sri)
)]

F− DEL =
1

T

n∑

i=1

(sri − shi − dhi). (9)

Note that in the term for F-DEL, we make a simplifying as-
sumption that actions, while being able to accumulate, do not
accumulate more than once. In other words, we assume that an
agent will start at most one new action before the other agent
starts its next action. Given this assumption, we can also simplify
(up to a constant) that m = n.

V. SIMULATIONS USING THE MINIMAL MODEL

We characterize the temporal dynamics of the proposed ob-
jective fluency metrics by simulating the minimal turn-taking
model.

The simulations are produced by generating a sequence of in-
terleaved human and robot activity segments given the length of
each agent’s action and the length of the delay between actions.

Fig. 3. Rates of objective fluency metrics oscillate throughout the task pe-
riod, if n and m are low. In this example, H = {(0, 6), (12, 6), (24, 6)}, R =
{(8, 6), (20, 6)}.

The delay can be specified as negative to generate overlapping
actions. The simulator is given either fixed values or a mean
and standard deviation for each parameter. In the latter case, the
simulator picks a value based on a normal distribution, random-
ized per activity segment. Given a set of generated human and
robot activity segments, the simulator then calculates and graphs
a running value for each of the four metrics.

A. Instantaneous Dynamics

The examples in Fig. 2 and the derivations in Section IV
present only summary statistics for each metric. This is how
these measures have been used thus far in the HRI literature.
However, examining the instantaneous dynamics for each met-
rics shows that there is additional temporal information that is
useful to consider.

Fig. 3 shows the instantaneous dynamics of each metric and
how they are related to periods of human and robot activity, over-
lap, and delay—as indicated by the shaded strips in the graph.
Rates of H-IDLE and R-IDLE oscillate directly with the agent’s
activity. Rates of F-DEL and C-ACT oscillate similarly with
periods of overlap and waiting periods.

Notably, the rates of all the objective metrics vary rapidly
when dealing with low numbers of human and robot actions.
If calculated in relation to the total task time, as is common in
current use, there is thus a risk of misestimating the actual value
of each metric. For low numbers of n and m, it is preferred
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Fig. 4. Consistent human–robot team settles on mean values for objective
metrics. Here, human actions take six time units, robot actions take four units,
the robot’s F-DEL is two units, and the human has an anticipation of two units.

to evaluate the metrics as a fraction of a single, or average,
agent turn. However, due to the possible variance in the length
of these turns, this approach is not always feasible. At the least,
researchers should be aware of this issue and take measures to
counteract it case by case.

B. Settling Period

Fig. 4 shows that the oscillations eventually settle on the av-
erage value as a fraction of task time. Thus, per HRI scenario,
it makes sense to estimate the “ringing” or “settling” period for
the specific collaborative dynamic and make sure to measure
metrics after their values are likely to have settled.

C. Effects of Agent Variance

That said, there is a caveat with respect to settling and the
subsequent extrapolation of metrics from the mean values at an
early stage of the collaboration. In particular, the simulations in
the previous example model both the human and the robot as
invariant over time. In this case, the objective fluency metrics
can be closely modeled by the analytical derivations given in
Section IV, by estimating the mean over an initial period, or
after the metrics have converged.

In contrast, adding variance to either or both of the agents
notably undermines these assumptions. Fig. 5 shows results
from simulations of a human turn-taking agent with the same
parameters as in the previous example. The robot’s duration,
however, is not fixed but drawn from a normal distribution
dri ∼ N(4.0, 0.25). We ran the same simulation twice.

While the metrics in Fig. 5(a) converge on what can be con-
sidered the mean value for each, Fig. 5(b) shows that metrics
that appear to have settled undergo perturbations as late as three
times the duration after which the initial turn-by-turn “ringing”
has decayed.

The dynamics are even more pronounced if both agents are
subject to variance in their turn-by-turn timing. Fig. 6 shows
50-turn simulations in which both turn durations are drawn
from dri, dhi ∼ N(6.0, 1.0). The strip graphs show that metrics
accumulation is highly time dependent, and that in some cases,
metrics converge to a fixed point (a), but in others (b), (c),
changes occur late in the task execution.

D. Discussion

The objective metrics suggested herein have thus far been
estimated exclusively as a single ratio value over the total task
period. Simulations using a minimal model show that this use
should be qualified: First, we see there is an initial “ringing”
period, in which the metrics as part of total task time greatly
oscillate before converging on their mean value. Researchers
should evaluate the metrics with respect to a single turn instead
of the total task time if the number of turns is low.

Second, even with relatively fixed human and robot behaviors,
small variations can cause major dynamic shifts in metric values.
These can occur late in the interaction. This emphasizes that
fluency metrics need to be tracked and dynamically evaluated
throughout the human–robot collaboration.

VI. VALIDATING THE OBJECTIVE METRICS

As a final step, we set out to evaluate how objective fluency
metrics relate to people’s subjective sense of fluency. Both sub-
jective and objective fluency metrics are increasingly used in
human–robot collaboration research (see Section VII), with the
assumption that the objective metrics capture something of peo-
ple’s sense of fluent collaboration. However, their relation has
not yet been empirically grounded. To this end, we conducted a
study relating the metrics discussed above.

We have developed a simple human–robot collaborative sce-
nario simulator with a number of flexible timing parameters. The
scenario is a joint workspace (see Fig. 7), in which the human
and the robot transfer a number of objects from the right (human)
end table of the workspace to the left (robot) end table. To do this,
the human places objects on the shared (middle) table. This is
a prototypical abstraction of shared-location human–robot col-
laboration, mapping to a factory stocking or home cleaning task.
In our simulator, we can model a number of processing delays
into each of the participants’ action policies. Specifically, we
can vary the time it takes each agent to pick up the objects, to
detect the existence of an object in each workspace location, and
to drop off the objects at the various workspaces.

A. Online Study

We collected data using Amazon’s Mechanical Turk platform,
which was found to be a reliable source for data gathering in sim-
ilar contexts, given appropriate study controls [14]. A total of
143 people participated in the study. Of those, 104 participants
were analyzed (age 21–68; M = 32.02 ± S = 10.43; 39 female),
as determined by prerun criteria. These criteria included English
proficiency, approval rate, filtering questions, and task time. Par-
ticipants were paid $0.10, an amount on par with the going rate
at the time for online surveys of approximately the length of the
current study.

Participants were presented with two instruction pages and
a form for informed consent. Then, each participant was pre-
sented with five short clips of the simulator. Each clip was ap-
proximately 40 s in length. The clips were counterbalanced and
randomly assigned to the participants, chosen from a database
of 50 clips, as described below. Each video was followed
by an eight-item fluency scale. Then, participants filled out a
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Fig. 5. Two simulation results using the minimal turn-taking model with robot-only variance. In some cases (a), the metrics converge after an initial settling
period; in other cases (b), significant changes to metrics can occur late in the interaction.

Fig. 6. (a)–(c) Simulation results using the minimal turn-taking model using the same basic human and robot parameters but with both human and robot variance,
illustrating the dynamic nature of metrics over time.

Fig. 7. Screenshot of the collaboration scenario used to evaluate the relation
between objective and subjective fluency metrics.

demographic questionnaire, were debriefed, and were credited
for their participation.

B. Scenario Generation

The study used 50 clips of various agent behaviors, cover-
ing a range of collaborative scenarios. To generate the clips, we
randomized agent policy parameters, including the time it takes
to detect and pick up the items, the time it takes to put them
down, and additional processing delays. Initially, we generated
150 clips using random values for each of the above-mentioned
agent parameters. Delays and processing times for both agents
were uniformly selected between 0 and 4 seconds, with agents’
travel time through their half of the workspace being approxi-
mately 3 seconds long. We then narrowed the 150 clips down
to 50, striving to cover a broad representation of each of the
four fluency metrics. We eliminated similar clips and collected
those that would vary one fluency metric while leaving the others
largely unchanged. To do so, we visually examined histograms

of the clips along each metric and chose videos based on their
location on each of the four graphs. To evaluate this procedure,
we analyzed the histograms of the resulting 50 videos and con-
firmed that each metric was adequately represented, i.e., that
there were low and high cases for each metric, and that the dis-
tribution for each metric was approximately normal, spherical,
and spread across a similar number of clips for each metric.

We also conducted a qualitative manipulation check to verify
that participants perceive the scenarios in the way we intended.
Pilot study participants (n = 12) were presented with eight
videos, in random order, each representing an extreme case of
each objective metric. After each video, participants were inter-
viewed along three open-ended questions: “How would you de-
scribe the interaction between the human and the robot?” “How
would you describe the robot?” and “Would you describe the
collaboration as fluent?” Subjective judgment of the responses
suggested that participants perceived the extreme cases of our
metrics as representing extremes of concepts related to collab-
orative fluency.

C. Dependent Measures

As this is an online study with a large participant popula-
tion, we aimed to make the subjective questionnaire as con-
cise as possible, especially given that each participant fills it
out five times. We, therefore, used only eight of the above-
mentioned indicators, selected as most closely related to a
subjective sense of fluency. The indicators are listed in Table I,
covering general fluency, robot contribution, commitment, and
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TABLE I
CORRELATION BETWEEN OBJECTIVE METRICS AND INDICATORS OF SUBJECTIVE FLUENCY

*p<0.05, **p<0.01.

Fig. 8. Mean fluency rating per tercile of clips split by objective metric.

teammate traits. All scales were rated on a seven-point Likert
scale from “strongly disagree” to “strongly agree.” In a separate
scale pretest (n = 21), we found high cross intercorrelations for
this composite (Cronbach’s α= 0.81). In the study, Cronbach’s
α for this composite was 0.74.

D. Results

To investigate the relation between the objective and subjec-
tive metrics, we calculated Pearson correlations between each
of the objective metrics and the eight-item composite, as well
as for each indicator separately. The significance of correlation
was evaluated using a two-tailed test with a p < 0.05 threshold.

R-IDLE was not significantly correlated with subjective flu-
ency: r(495) = −0.074. H-IDLE was significantly correlated
with subjective fluency: r(495) = 0.119, p < 0.01. C-ACT was
not significantly correlated with subjective fluency: r(495) =
0.047. F-DEL was significantly reverse-correlated with subjec-
tive fluency: r(495) = −0.123, p < 0.01. Table I summarizes
these findings and reports the correlation of each of the indica-
tors with the four objective metrics.

Fig. 8 further illustrates the relationship between objective
and subjective metrics. To explore the trends contributing to
the discovered correlations, we split the clips into three equally
sized populations—along each one of the objective metrics. The
figure shows the mean rating on the composite fluency scale for
each tercile.

E. Discussion

Our exploratory study shows significant correlation between
two of the four objective metrics suggested and subjective ob-
server fluency perception: H-IDLE and F-DEL (inversely cor-
related). R-IDLE is consistently inversely correlated with flu-
ency perception, but not significantly so. C-ACT was not found
correlated with the subjective metrics. Exploring the tercile
trends shows, however, that very high R-IDLE does lead to a
drop in fluency perception, as does very low C-ACT. Perhaps,

the effects of these metrics plateau more quickly than the other
two metrics. Examining the individual indicators, we see that the
robot’s personality traits were not strongly correlated with the
objective fluency measures. General fluency, the robot’s com-
mitment, and team member contribution appear to be the more
salient constructs in the composite scale.

Surprisingly, H-IDLE is positively correlated with fluency. A
possible explanation is that people mainly considered the robot’s
contribution and thus saw the human’s possibility to rest as a
positive aspect of the collaboration.

The indicator “The human was the most important member”
was the weakest indicator on the scale. Its inclusion in the scale
reduces the scale’s Cronbach’s α from 0.84 to 0.74, and it is not
correlated with any of the objective metrics that we evaluated.
It should probably be eliminated in future studies.

VII. USE OF FLUENCY METRICS IN HUMAN–ROBOT

COLLABORATION RESEARCH

As mentioned in Section I, the metrics proposed and discussed
herein have been used in a growing number of human–robot
collaboration studies. This section provides a current survey on
their usages and related findings. This could shed light on which
metrics were deemed more and less useful, although most au-
thors did not explicitly consider this question. Table II shows a
chronological list of metric usage.

The works fall into three broad categories: The majority of
studies are Shared Workspace tasks, where agents bring objects
to a shared area, such as a table, and can pick up or manipulate
these objects at that workspace. This is akin to the simulation
scenario used in the study in Section VI. Two smaller categories
are Handover tasks, where objects are carried to a point where
they are handed over from one agent to the other, and Shared
Manipulation tasks, where agents concurrently manipulate ob-
jects, at least for some portion of the task time. This distinction
is not perfectly sharp, as some tasks include elements of two or
more collaborative activities.

A. Shared Workspace Tasks

The first suggestion of fluency evaluation was in a simula-
tion workspace, where humans carried car parts to a shared
workspace and an anticipatory robot assembled them [5]. Sub-
jects were asked to rate a subset of five of the subjective metrics
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TABLE II
CHRONOLOGY OF FLUENCY METRICS USED IN HUMAN–ROBOT COLLABORATION RESEARCH

described above. Significant differences were found in the rat-
ing of the robot’s contribution and commitment. In terms of ob-
jective metrics, the rate of concurrent motion was significantly
higher in the anticipatory group, settling at approximately twice
the rate compared to the reactive group. There was also a signif-
icantly lower F-DEL in the anticipatory group, but no difference
in H-IDLE.

A first physical robot study evaluated fluency in the context of
anticipatory perceptual simulation for collaborative robots [10].
In a human-subject study, there were significant differences in
human–robot fluency, the improvement of the team, the robot’s
contribution, and the WAI goal subscale, as well as some individ-
ual measures. There was no significant difference in measures
of the trust in the robot, the robot’s character, or the WAI scale.
Overall task efficiency was better in the experimental condition.
In addition, two objective fluency metrics were measured: H-
IDLE and the F-DEL incurred by the robot. Both were found to
have been positively affected by the proposed algorithm.

Chao and Thomaz designed a system based on timed Petri
Nets for multimodal turn-taking and joint action meshing. In a
human-subject study, participants rated subjective fluency met-
rics relating to the relative contribution, trust, and naturalness of
the interaction. Participants in the interruption condition rated
their mental contribution higher and rated the interaction as less
“awkward” than those in the baseline condition. Task efficiency
was used as an objective metric of team fluency.

Nikolaidis and Shah proposed several algorithms to im-
prove human–robot teaming including human–robot cross

training [8] and mixed-observability Markov decision processes
(MOMDP) [2]. In [8], authors used individual indicators from
the “trust in robot” measure and adapted two indicators from
the WAI “goal” subscale. The study also evaluated three objec-
tive metrics: concurrent motion, H-IDLE, and R-IDLE. There
were significant improvements in all of these measures. In [2],
researchers measured H-IDLE as an objective metric, and they
did not find significant differences between the proposed al-
gorithm and manual robot control. Subjective measures of the
robot’s intelligence, accuracy, trustworthiness, and smoothness
were also measured and found to be similar in two variants of
the algorithm.

Unhelkar et al. compared the performance of mobile robots
with human assistants delivering parts to human workers [15].
Objective fluency metrics were interaction time and idle time,
and subjective fluency metrics included overall performance,
and how well the subject perceived the fluency and smoothness
of the interaction. The results suggested no significant subjec-
tive difference between human and robot assistants. Increased
idle time with the robot assistant indicated that human–human
collaboration was more fluent.

Dragan et al. measured fluency for three different paths of
motion in a coffee-making scenario [16]. Subjective metrics in-
cluded perceived fluency, safety, comfort, trust, and contribu-
tion, whereas objective metrics included coordination time, total
task time, and concurrent motion time. The results showed less
coordination time with legible motion than predictable motion,
with effects on the subjective view of the interaction.
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Gombolay et al. investigated human–robot teams with vary-
ing degrees of robot control [17]. In related work, they tested
how a robot should best incorporate human teammates’ prefer-
ences into the team’s schedule [18], [19]. In their work, objective
metrics include assembly time, rescheduling time, and H-IDLE.
The authors used most of the above-presented subjective fluency
metrics along with satisfaction with the robot’s performance,
perceived productivity, and necessity of both agents in the in-
teraction. Both objective and subjective metrics improved with
complete robot control, and a positive correlation was found
between team fluency and a human subject’s willingness to col-
laborate with robots.

Baraglia et al. investigated when a robot should take initiative
in a collaborative scenario. Three scenarios were tested, includ-
ing a proactive robot, a reactive robot, and a human-initiated
robot [21]. Objective metrics analyzed were concurrent motion,
zero motion, H-IDLE and R-IDLE, human-only movement time,
and robot-only movement time; subjective metrics included the
robot’s helpfulness, its awareness of human and task progress,
its contribution to the task, its overall fluency, efficiency, and
the naturalness of the interaction. The findings suggested proac-
tive robots led to lower R-IDLEs without a significant change
in H-IDLE, while subjective ratings were not significantly
different between both proactive and human-initiated robot
conditions.

Maniadakis et al. analyzed a proposed system for collabo-
ration planning using fuzzy time intervals and constraints [22].
They demonstrated it in a joint cooking task between two robots.
Objective fluency metrics included idle times and concurrent ac-
tion. The planner was shown to have lower idle times, facilitating
C-ACT.

Finally, Rahman studied the collaboration of a virtual human
and a humanoid robot through a cyber-physical system, in an
experiment where both work together to find a hidden object
[25]. Objective metrics were leader idle time, follower idle time,
nonconcurrent activity, and F-DEL. The results indicated more
fluent collaboration when the humanoid robot acted as the master
agent, correlated with less idle time, nonconcurrent activity, and
F-DEL.

B. Handover Tasks

Cakmak et al. developed methods using spatial and temporal
contrast to enable more fluent handovers from a robot to a human
[6]. A survey was used to estimate the readability of handovers,
and in an experimental human-subject study, two objective mea-
sures of fluency were evaluated, including human F-DEL and
robot F-DEL. The researchers found that temporal contrast pos-
itively affects human F-DEL.

Huang et al. assessed human–robot handovers in unloading a
dish rack [20]. Objective fluency metrics included C-ACT, com-
pletion time, H-IDLE, and R-IDLE; a subjective measure on a
five-item scale was adopted from the questions in Fig. 1. The
results suggested that proactive coordination improved perfor-
mance in terms of C-ACT and idle time but impaired a user’s
perceived fluency, while reactive coordination did the inverse,
suggesting a complex relationship between subjective and ob-
jective fluency.

C. Shared Manipulation Tasks

Most recently, fluency metrics have been applied in physical
shared manipulation tasks. Nikolaidis et al. analyzed models for
human–robot mutual adaptation in a collaborative table-holding
scenario [23]. The authors used ten subjective metrics, including
measures of trust, WAI, and satisfaction with the robot. The
findings demonstrated that their model of human adaptation was
better at establishing human–robot trust.

Faria et al. evaluated the impact of different motion types in
a collaboration scenario between a robot and multiple people
[24]. Delay was used to evaluate objective performance. Sub-
jective metrics evaluated user perception of fluency using an
undisclosed questionnaire. The results found that although leg-
ible motions are more expressive than predictable, workspace
configuration and the existence of other bodies are crucial in
humans’ understanding of the robot’s objective.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we discuss metrics to evaluate human–robot col-
laborative fluency—the successful coordination and meshing of
actions in a team. These metrics include subjective measures
made up of internally valid scales and individual indicators. They
also include four objective measures that could provide bench-
marks for evaluating the fluency of a human–robot collaborative
interaction.

Subsets of these metrics have been used in the past years to
evaluate human–robot fluency in our own work and in that of
other researchers. However, this is the first attempt to systemat-
ically examine fluency metrics and to empirically evaluate the
validity of the objective metrics in terms of a subset of the sub-
jective metrics used. To do so, we presented analytical forms of
idealized metrics as well as insights from computer simulations
of a minimal shared workspace or handover model. Our findings
indicate that the temporal dynamics of the proposed metrics may
be more complex than previously considered and should be taken
into account by human–robot collaboration researchers.

Relating objective and subjective metrics, we find F-DEL to
have the strongest correlation with subjective fluency perception,
and that it mostly correlates with team fluency, robot contribu-
tion, and commitment indicators. H-IDLE also shows a signifi-
cant correlation with fluency perception. Anecdotally, R-IDLE
and C-ACT appear to be related only in their extreme nonfluent
case.

Effect sizes were not large in our study. This could be be-
cause fluency perception by an outside observer is not as sen-
sitive as that of a participant in the collaboration. We are cur-
rently working on a participant-centric version of the shared
workspace study described above, as well as an experimental
protocol examining causal relationships between high-fluency
robot policies and the human’s sense of fluency.

A literature review of the preferred use of fluency metrics in
the past decade shows a roughly equal use of the four objective
metrics presented in this paper, often used in combination with
overall task time. H-IDLE slightly leads the use table of objective
metrics. Researchers have found general fluency, along with trust
and robot contribution to be the most useful subjective metrics.
This observation is in line with our own findings here, suggesting
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these metrics to be more applicable than others. That said, some
of the presented subjective metrics are minimal and best fit for a
fast assessment of the downstream effects of HRI. For some of
these constructs, more extensive metrics have been studied, for
example, Muir and Moray’s work on human–machine trust [26].
Such validated measures should be considered in future research
on the downstream effects of fluency.

In summary, it is worth noting that fluency in human–robot
collaboration is not a well-defined construct and is inherently
somewhat vague and ephemeral. That said, our work is based
on the contention that fluency is a quality that can be positively
assessed and recognized when compared to a nonfluent scenario.
Moreover, it is the very tacit nature of fluency that necessitates
tools for its evaluation toward the design of successful robotic
teammates.

There are aspects of collaborative fluency that these metrics
do not yet address and that should be considered for future work.
These aspects include: How to take into account correct and in-
correct actions of the robot and the human? How can we model
uncertainty in action start and end times? Does the role relation-
ship between human and robot (e.g., supervisor, subordinate, or
peer) affect perceptions of fluency? How should one account for
corrections and repetitions of identical actions? And how can one
extend these measures to larger teams than just one human and
one robot? It is also worth noting that the metrics presented here
are highly dependent on the definition of activity start and end
points. These points may be task-specific and ambiguous, and
their specification may significantly affect the resulting metrics.

The metrics herein are an evolving work in progress. Over
the years, we have added, refined, and removed some of these
metrics from our inventory. This work is a step to systematically
review and validate the metrics as they have been used, in or-
der to develop a generally agreed-upon set of fluency metrics
that can serve the human–robot collaboration community. This
can enable clearer benchmarks to compare human–robot col-
laborative systems, advancing the goal of designing more useful
robotic team members.
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