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statistical tools for data analysis, and reporting results.

CCS Concepts: « Human-centered computing — Empirical studies in HCI; -« Computer systems or-
ganization — Embedded systems; Robotics;

Additional Key Words and Phrases: Experimental studies, statistical analysis, research methods

ACM Reference format:

Guy Hoffman and Xuan Zhao. 2020. A Primer for Conducting Experiments in Human—-Robot Interaction.
ACM Trans. Hum.-Robot Interact. 10, 1, Article 6 (October 2020), 31 pages.

https://doi.org/10.1145/3412374

1 INTRODUCTION

Human-Robot Interaction (HRI) research spans a wide variety of academic disciplines and schol-
arly practices. Some of the work focuses on empirical studies in the tradition of social psychology
and other social sciences, investigating how humans perceive and interact with robots in various
contexts. Another part of the HRI field is concerned with the design of new robots, algorithms, and
interaction methods, rooted in robotics engineering, computer science, and design research. Yet
another group of researchers are exploring the theoretical, cultural, and societal aspects of HRI,
grounded in humanities traditions.

Despite the substantial diversity in researchers’ backgrounds and methodological training, it
has become a common practice in HRI to include an empirical evaluation of new systems, designs,
or theories. Conducting studies that adhere to rigorous methodologies is critical to obtaining sci-
entific knowledge about these systems, designs, and theories [27, 38]. In this article, we provide
a primer with principles and recommendations for each stage of the process of conducting ex-
perimental research in HRI: planning, execution, analysis, and reporting. The material presented
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here does not span the full spectrum of HRI methodologies. It focuses primarily on hypothesis-
driven experimental research and does not, for example, cover context-grounded or observational
research.

This primer is mainly aimed at readers who may be new to conducting experiments. It is in-
tended to help them understand the core principles and concepts, get up to speed in running their
first studies, and avoid making common mistakes. To that end, it offers a hands-on guide on how
to plan, execute, analyze, and report an HRI experiment from start to finish; it outlines important
terminology, best practices, and common pitfalls in every essential step of conducting experimen-
tal research; and it features some of the most common designs and analyses used in HRI research.
This tutorial aims to strike a balance between scope and depth and is therefore complementary to
existing publications that discuss methods in HRI on a conceptual level [22] or provide targeted
recommendations on specific methodological issues [7, 67]. Hence, it may serve as an accessible
teaching material for the HRI community to train the next generation of experimental researchers.

Another motivation for this primer is that recent years have seen significant progress in the
social sciences toward more rigorous methods and practices [53, 57, 61, 66]. This progress has
been in part a response to a replication crisis that started in the early 2010s and has led to active
discussion resulting in major changes in how empirical research is conducted in a variety of em-
pirical disciplines (3, 5, 25, 30, 63, 71]. New practices have been introduced and are increasingly
considered as necessary to improve research reproducibility [2, 42, 70]. Against this background,
we hope to offer updated recommendations for HRI research methodology based on advances in
related disciplines.

A third motivation of this article is to clarify terminology and help researchers in the HRI com-
munity use a common language to describe their research goals, tools, and results. As an inter-
disciplinary research field, HRI has attracted scholars from a wide range of backgrounds and is
successful in breaking down disciplinary boundaries, which has the potential to generate novel
ideas with high impact [51]. At the same time, communication across disciplines can be challeng-
ing when colleagues expect different research practices and speak different scientific languages.
We hope that this primer can assist researchers from different academic backgrounds to establish
a common terminology around research processes, concepts, and practices and to identify differ-
ences in disciplinary perspectives when they arise.

The recommendations put forward here are neither absolute nor exhaustive. There is active
debate regarding research methods, and for every recommendation in this article there may be
well-founded scholarly disagreement. However, given the current state of empirical methods in
many HRI publications, setting a baseline could help move the needle toward achieving better
practices and more reproducible findings.

This primer is roughly organized in chronological order of empirical research activities (see
Figure 1). It begins with clarifying research questions, constructs, and hypotheses (Sections 2 and 3)
and then moves to study design, which includes choosing variables and measures (Section 4),
planning the study procedure (Section 5), and sampling participants (Section 6). It then goes on to
cover data collection (Section 7), some commonly used experimental statistical methods and their
appropriateness in various contexts (Section 8), as well as recommendations for reporting and
discussing results (Section 9). This presentation order also corresponds to how research is usually
presented in an academic paper. In addition, this primer discusses the limitations of the proposed
recommendations (Section 10). We conclude by offering suggestions on how our field can take
collective efforts to produce more rigorous and reproducible experimental research (Section 11).

Due to the limited scope afforded by a single paper, the methods presented here are biased
toward experimental and quantitative research. We comment in less detail on observational stud-
ies and qualitative research. This should not be seen as an endorsement of specific methods (see
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Fig. 1. The stages of empirical research, mapped onto the sections of this document.

Section 10). In fact, we believe that qualitative research methods have been much underutilized in
HRI research, and we encourage readers to familiarize themselves with these methods by seeking
out other sources.

1.1 Example Scenario: A Robot Walking Side by Side with a Human

Throughout this article, we will use the following example scenario to illustrate the presented
concepts: In this scenario, you are a roboticist and have designed a new algorithm for mobile
robots to navigate alongside humans. Your work is based on the idea that effective human-robot
joint navigation requires an algorithm that adjusts the robot’s navigation path based on the human
user’s movement in real time. Therefore, your algorithm uses the latest machine learning methods
to track human walking patterns and employs expertly crafted planners to stay by the human’s
heels without colliding with them.

When you test your algorithm, it seems to work well. You ask a few students in your lab for
their opinions and everyone tells you it is brilliant. To get a more objective evaluation, you show
a video of the robot using your algorithm to five students in the campus cafeteria and ask them
whether they would trust your algorithm to be safe, and four of them say yes. So you draw the
conclusion that your algorithm is doing a good job in terms of safety and user trust.

But there are many problems with this approach: For example, it is unclear whether simply ask-
ing people if they trust your algorithm after watching a video is an accurate measure of their actual
trust. Also, students might respond positively because they want to make you happy. Furthermore,
you do not know if asking five people is enough to draw a sound conclusion. And, finally, it is dif-
ficult to tell whether 80% is a low or a high percentage of supporters. In the next sections, we
will address these and other issues in this scenario by describing how to plan and run a rigorous
empirical study that evaluates whether your algorithm actually works as intended.

2 RESEARCH QUESTION AND CONSTRUCTS

At the core of empirical research are research questions and constructs. While you might be excited
to start planning a study, withstand the temptation to leap directly from your system, design, or
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theory to the details of a study. Begin by clearly formulating the research questions and constructs
underlying your research project.

2.1 Clarify Your Research Questions

Any empirical study starts with one or more clearly defined research questions. The reason you
are running a study is to answer a research question, and it is recommended that you state this
research question explicitly. You may soon find yourself buried in the details of study design and
execution; having clarity about what question you intend to answer will be a beacon that helps
you make decisions throughout every step of the process.

One important thing to remember is that research questions should always be phrased as ques-
tions, not statements. They can be broad, for example: “To what extent, if any, is the new algo-
rithm better than the current state-of-the-art algorithm?” or “Under what conditions is the new
algorithm better?” Or they can be narrow, such as: “Can the new algorithm prevent collisions with
humans while maintaining a minimal distance?” or “Do people trust the new algorithm to run on
a suitcase-carrying robot?” The scope of your question is up to you but, regardless, it is crucial to
have a clear question that your study is meant to address, because the choice of research question
will drive everything downstream. If you are not sure where to start, then many research questions
can be phrased with the prefix “to what extent, if any....”

We will continue with our example and the following two research questions: To what extent, if
any, will a human-adaptive path algorithm make people trust the robot to accompany them? And
do people feel safe walking with a robot running the new algorithm?

2.2 ldentify Your Constructs

Once you have a clear research question, you need to phrase the question in terms of a relation-
ship between constructs. Constructs are the theoretical and abstract concepts that you intend to
investigate in your empirical study. In running the study, you evaluate what kind of relation-
ships, if any, exist between your constructs. In our example scenario, possible constructs could be
“human-adaptive movement,” “trust in the robot,” and “psychological safety.” Constructs should
be meaningful theoretical concepts and not specific ways to measure them. Therefore, “trust in
the robot” is a construct, whereas the trust questionnaire you decide to use is not a construct, but
an operationalization of this construct. We will expand more on operationalizing constructs in a
later section.

In many cases, such as the one in the example, you would like to test causal relationships,
i.e., whether changes in one thing cause changes in another. Evaluating causal relationships is
valuable, because it serves to explain why an outcome happens and can provide useful insight
on how to make a desirable outcome more likely to happen. In these cases, constructs can be
described as having a predictor-outcome relationship.! In other cases, you might be interested in,
or be limited to, testing correlational relationships, i.e., whether or not two constructs are related,
even though you cannot identify which one is the cause, or if a causal relationship exists at all.
Correlation does not necessarily imply causation, but knowledge about correlational relationships
is still valuable in several important ways (see Stanovich [76] for a review). For instance, once you
know two constructs or measures are correlated, you can use a score on one measure to make a
more accurate prediction of another measure.

Our example scenario does involve testing causality, namely whether human-adaptive
movement causes a sense of safety and/or trust. You therefore decide that the human-adaptive

INote, however, that the terms “predictor” and “outcome” are also used in regression analysis, where a causal relationship
is not necessarily assumed.
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movement is the predictor construct and that the user’s sense of safety and trust in the robot are
the two outcome constructs.

Because the choice of research questions and constructs is going to affect the rest of your em-
pirical project, it is worthwhile to spend time and care choosing, defining, and clarifying them.
To identify good research questions and constructs, related literature in human behavior (in areas
such as social psychology, cognitive science, sociology, communication, consumer behavior, pub-
lic health, and so on) is often a good source of inspiration. Identifying a theory that would carry
over to the HRI situation you are studying will give your research a solid base to stand on.

Good researchers usually start with a vague idea and then look into the literature and see what
has been done to judge whether the idea is novel and consequential. Only if the idea seems inter-
esting and the theoretical constructs seem important should you go on to the next step, coming
up with specific hypotheses about your constructs.

3 HYPOTHESES

After identifying a construct-based research question, it is time to formulate your hypotheses. Hy-
potheses are affirmative statements about relationships between your constructs that your study
can either support or refute. In the walking-companion robot example, a hypothesis could be
“adapting to human walking patterns leads to higher trust in the robot than not adapting to the
human.” In this case, your predictor is categorical, i.e., either adapting the movement to the human
or not. In contrast, the hypothesis can be made about relationships between continuous predic-
tors and outcomes, like “the more the robot takes distance into consideration, the safer people feel
around the robot.”

3.1 Specifying a Baseline

When you are formulating a hypothesis about the effects of a new system or design, you need to
be clear about the alternative baseline you are comparing to. In our example, the new algorithm
could be more trust-evoking than a specific algorithm currently used by most researchers in the
field. Or it could be better than a human teleoperating the robot or maybe even an actual human
walking with another human. If your hypothesis does not end with a subclause like “compared
to...,” then ask yourself if you forgot to include a baseline in your hypothesis. In addition, try to
find a fair baseline. It is not unusual for peers to reject an experimental study on the basis that the
claimed innovation was compared to an unfair “strawman” baseline.

3.2 The Problem of HARKing

Hypotheses have to be clearly and explicitly defined before running your study. Hypothesizing
after the results are known (HARKing for short) has been identified as a threat to the credibility
of research results and researchers’ cumulative knowledge [46, 58, 70]. Changing or introducing
a research hypothesis based on the discovery of an effect critically confuses confirmatory and
exploratory research—it is akin to shooting first and then drawing the target around where you
shot [70].

This is not to say that there is no benefit to conducting additional analyses after first examin-
ing the data. Such exploratory analyses may reveal unexpected and interesting associations and
enrich people’s understanding of the research phenomenon; however, the final paper should fully
disclose the exploratory nature of such analyses, and it is recommended that researchers follow up
important insights from their exploration with confirmatory studies down the road, where they
start with clear and explicit hypotheses.

Your hypotheses should be clearly stated in your write-up of the study in the same form that you
wrote them before running the study. As a stylistic note, you may find it helpful to number your
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hypotheses, or give them short names, and refer to them by their numbers and names throughout
your paper, although not all publications follow this convention. In our examples, hypotheses could
be written as:

e H1 (Trust): Users trust a walking-companion robot that adjusts its navigation path
to the human’s movement more than they trust the famous navigation algorithm
STRAIGHT _WALKER.

o H2 (Distance-Safety): The higher the minimal distance allowed in the algorithm, the safer
people will feel around the robot.

3.3 Where Do Hypotheses Come From?

In the example above, hypotheses H1 and H2 were mainly based on wishful thinking. Instead,
you can make a stronger argument and have a greater chance of finding supporting evidence if
your hypotheses are based on theory [73]. “Theory” is a loaded term and may seem intimidating.
In reality, the word can mean different things. It could refer to a well-established theory from
another field, such as social psychology, but it could also be an ad hoc theory that you yourself
constructed based on your observations of people’s daily social interactions. It could also be your
own theory based on a literature review of previous studies in HRI. A good practice is to survey
a set of previous work and other related literature and generate hypotheses based on existing
knowledge rather than out of thin air.

An additional great way to construct hypotheses is to run exploratory studies—often taking the
form of pilot studies (see also: Section 5.2). In the navigation example, you could recruit a few users
and let them walk with the robot while performing a number of activities and then interview them
about their experiences. If most people noted how safe they felt when the robot was further away,
then that can be a good basis for a hypothesis. You could also introduce quantitative measures in
your pilot study, so that you can analyze your results and form your hypotheses based on emerging
trends identified among a small group of participants.

3.4 Higher-Order Relationships between Constructs: Mediation, Interaction,
and Moderation

In some cases, you may find it informative to hypothesize the relationship between more than two
constructs. For instance, you might want to understand how, why, for whom, when, and where the
adaptive algorithm increases trust. Two of the core methods to analyze these questions are called
mediation and moderation.

Mediation analysis enables researchers to examine the “how” and “why” questions by hypothe-
sizing an internal (often psychological) process through which one construct affects another [54].
There could be, for instance, a chain reaction among the three constructs we used in our example:
Compared to a baseline algorithm, the human adaptive algorithm leads people to feel safer, which
then leads to people’s increased trust in the algorithm. Thus, the trust people feel in the human-
adaptive algorithm is “mediated through their sense of safety.” Figure 2(b) shows how mediation
is usually represented in graphical form, compared to an unmediated relationship in Figure 2(a).

Moderation analysis enables researchers to examine the “for whom,” “when,” or “where” ques-
tions about the hypothesized relationship between predictor and outcome constructs. For instance,
you speculate that dog ownership is related to people’s sense of trust in the new algorithm, as
shown graphically in Figure 2(c). You specifically hypothesize that the algorithm may elicit more
trust in dog owners than in non-dog owners, because your algorithm was inspired by how dogs
follow their owners and may have an intuitive appeal to those who are already accustomed to this
movement pattern.
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Fig. 2. Relationships between constructs, without (a) and with (b) mediation and (c) moderation.

In this case, the “dog ownership” construct would be said to “moderate” the effect of “adaptive
walking” on the outcome construct of trust. In some cases, a moderator can completely reverse the
effect, i.e., the algorithm could work worse for non-dog owners than the baseline. In other cases, a
moderator only affects the intensity of the effect, i.e., your algorithm always works better than the
baseline algorithm, but especially for dog owners compared to non-dog owners. How one should
conduct mediation and moderation analyses is beyond the scope of this article; for a complete
guide, see Hayes [37]. Finally, it is worth mentioning that, mathematically, a moderation effect is
identical to an interaction effect in a factorial ANOVA test (see Section 8.4); the critical difference
lies in your research question and data interpretation—in our example, you are only interested in
how the algorithm influences trust and how dog ownership moderates this relationship, but you
are not interested in how dog ownership influences trust on its own.

4 DESIGNING THE STUDY

At this stage, you have defined a research question, broken it down into a set of chosen constructs,
and generated hypotheses about the relationships between these constructs. It is time to design
your study.

4.1 Study Context: Laboratory, Field, or Internet

The same hypotheses can be tested in a number of contexts. The most popular options are testing
in a laboratory, testing in the field, or testing on the Internet. Each has its benefits and drawbacks.

To start with, laboratory studies are conducted in a well-controlled environment, so they give
you more control over your variables, allow you to conduct random assignment, establish causal
relationships, and enable strict replication of conditions. Field studies, however, are conducted in
the everyday environment of the participants and are more similar to real-life situations. This
lends field studies external and ecological validity. External validity means that you stand on solid
ground to claim that what you have found in your study can be generalized to other times, places,
populations, and situations. In other words, good external validity suggests that your finding is not
just a quirk of the specific procedure you used. An additional question is whether your conclusions
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are generalizable to the real world outside of the lab. This is called the ecological validity of your
study. For instance, testing your adaptive-walking algorithm at a shopping mall can teach you
more about how people would actually respond to this algorithm in their day-to-day lives than
testing in the unfamiliar and constrained environment of a research laboratory.

That said, field studies are more difficult to set up and manage, and it is harder to control for
confounding variables than it is in lab studies. Confounding variables (or simply “confounds” or
“confounders”) are factors that affect your outcome constructs but are not part of your theory or
hypotheses. In our navigation example, if you ran your study at a shopping mall, you could not
control the noise level and the behavior of bystanders. These would be confounding variables, as
they—in addition to the algorithm—might affect people’s sense of safety.

Confounding variables are one of the factors that pose a threat to the internal validity of your
study. Internal validity is defined as the extent to which a researcher can be “certain that the
independent variable, or treatment, manipulated by the experimenter is the sole source or cause of
systematic variation” in the outcome variable. [87] You may thus have an issue with low internal
validity if your experiment produces “systematic sources of variance that are irrelevant to the
treatment variable and not under the control of the researcher” [87].

In summary, laboratory and field studies often trade off external and ecological validity with
internal validity, although you should attempt to take measures in both cases to minimize the
negative effects of the chosen context.

A third option that has become increasingly common in recent years is running online studies.
This option has been popularized by “crowdsourcing” platforms such as Amazon Mechanical Turk
and Prolific [77]. In the context of HRI, this is usually done by showing participants photos or
videos of robots or of humans interacting with robots and asking them questions via an online
questionnaire. There are considerable advantages and disadvantages to this method: On the one
hand, you can collect data from more participants more quickly with less financial cost, which
allows you to easily increase the statistical power of your experiment (see Section 6). In addition,
the populations recruited online have a more representative demographic than the usual university
participant pool that is made up mostly of high-achieving young adults. On the other hand, it is
difficult to control online participants as they may be multitasking and are not as immersed in and
committed to your study as face-to-face participants [88]. Furthermore, because some participants
may participate in dozens of studies each day, they can be overly experienced in certain judgment
tasks that are popular online and therefore might not show the same effects as naive participants
[13]. Perhaps the biggest problem, though, is that many studies require real-world interaction
between participants and robots to get people’s genuine responses, so watching a video lowers
the external validity of online studies [11].

In light of the strengths and limitations of lab, field, and online studies, you could also consider
combining them in the same project. For instance, you might conduct a quick and low-cost online
study as a pilot study for exploratory purposes, then test the effect and its underlying processes in
a well-controlled laboratory setting, and then go out to the field to corroborate your finding in nat-
ural environments. This approach has been coined “full-cycle research” [56]. Whichever context
you choose, make sure you consider these options with their respective benefits and drawbacks in
mind during study design, explicitly explain the reasoning that led to your decision, and discuss
potential weaknesses and limitations in your paper.

4.2 Between- and Within-Participants Designs

If you are running a human-participant experimental study, then you can choose to either use a
between-participants or a within-participants study design. A between-participants study means
that each participant is randomly assigned into one group to experience one variation of your
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Order effects to look out for
Ask yourself whether any of these order effects might be a substantial confound that can affect your
outcomes and thus undermine the internal validity of your study.

Familiarity - Participants know the task and have more information in later rounds.
Novelty - Experiencing something for the first time is different, for better or worse.
Habituation - People may get bored, or desensitized to the manipulation.

Learning - Participants get better at a task when they repeat it.

Fatigue - Participants’ cognitive and physical abilities decline over time.

Fig. 3. Potential order effects in within-participants designs.

predictor construct (which is also referred to as a “condition” or “level”), and you compare these
different groups of participants. A within-participants design means that each person experiences
more than one condition, and you compare the different experiences for each participant.

In our example, we have two conditions of the predictor construct: the adaptive robot walking
algorithm and the baseline algorithm STRAIGHT_WALKER. In a between-participants design, half
your participants experience a robot using your new algorithm and the other half walk with a
baseline robot. In a within-participants design, each participant would experience one algorithm
and then the other. The same logic can scale to experimental designs where a predictor has three
or more levels.

When both designs are feasible, a within-participants design is often preferred over a between-
participants design due to a clear advantage: Fewer participants are needed in a within-participants
design to achieve the same statistical power (more on statistical power in Section 6). One way to
think about this is that each participant serves as their own control, so you are less affected by
individual differences between participants. In our example, people might have different baseline
anxiety levels affecting their trust in everything. When you compare each person’s responses in
one condition to that same person’s responses in the other condition, individual differences in
anxiety level “cancel out,” as they affect both sides of the comparison.

Why should you not always use a within-participants designs then? One crucial reason is that
within-participants designs suffer from order effects. This refers to the possibility that the effects
you find are confounded with the order in which people experience the different conditions. In our
example, it may be that people get used to the robot and trust it more the second time around, an
effect completely unrelated to the algorithm used. This would be an example of a familiarity effect.
Another important order effect is fatigue, which increases with time spent on the experiment. A
related order effect is the novelty effect, where people react differently to things they experience
for the first time. Other factors such as learning and habituation may also lead to order effects.
Figure 3 describes potential order effects to consider when designing within-participants studies.

There are ways to mitigate order effects. The most popular one is called counterbalancing, mean-
ing that you randomize the order of the conditions that your participants experience. This way,
you can still use a within-participants design. In our case, half of the participants would be ran-
domly assigned to the new algorithm first, and the baseline second, and half of them would do it
the other way around. Make sure to rigorously randomize these assignments (see Section 7.3).

When counterbalancing is not feasible, there are other ways to minimize order effects. These
include giving people long breaks between conditions, sometimes up to several days, and
including an initial training run to mitigate novelty and learning effects before officially starting
your data collection.

You should always test for order effects on your collected data using statistical tests. Moreover,
you can add the order of your manipulation as a separate variable and control for its effect in your
statistical analysis.
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There are situations where order effects cannot be mitigated by any of the above-mentioned
techniques. For instance, it might not make sense for participants to evaluate the same stimulus
with slight variation more than once, especially if you are interested in people’s initial responses
[87]. Perhaps it is impossible to administer two different conditions while keeping the same par-
ticipants around in a field study. These situations require a between-participants design.

4.3 Operationalizing Constructs into Variables and Measures

The next step in designing your study is to convert your constructs into specific things you can
manipulate and measure, a process called operationalization. This may seem like a trivial point,
but it actually involves critical decision-making, because a construct can be operationalized in
many different ways. Consider our construct of “trust in the robot” from the navigation example.
To operationalize “trust” you need to start with a basic question: What does it mean to “trust” a
robot? To ensure conceptual clarity and consistency, you need to examine the prior literature to
understand how other researchers have conceptualized “trust” in the social sciences and in the
context of HRI. With a clear definition, you can then consider how to measure trust.

For instance, you could ask people to rate how trustworthy they perceive the robot to be us-
ing a questionnaire (e.g., Reference [24]). You could ask open-ended questions during interviews
or online surveys and assess their level of trust by conducting a textual analysis on their verbal
responses (e.g., Reference [52]). You could ask them to read hypothetical scenarios that require
trust and rate how willing they are to use the robot in each scenario (e.g., Reference [80]). If you
do not want to ask participants directly, then you could measure physiological indicators of their
emotional arousal, which can sometimes be related to trust [86]. Or you could introduce tasks that
measure actual trust-related behaviors. Such behavioral measures can vary widely from letting a
robot enter a secure-access area [9] to complying a robot’s instruction during an emergency [68]
to entrusting money to a robot in an economic game [55].

All of these examples illustrate that having decided on your construct does not automatically
determine your measures, and how to operationalize a construct is a separate decision. Further,
just as you should thoughtfully operationalize an outcome construct (in this case, “trust”) into a
measure, you should similarly operationalize your predictor into a specific manipulation. Once
you do that, you then must evaluate the quality of your manipulation using a manipulation check
(Section 5.3).

The operationalization you choose will critically affect the soundness of your study design.
When the manipulations and measures in your study design do not adequately reflect the theoret-
ical constructs that gave rise to the research question in the first place, your peers might rightfully
argue that your study has a problem with construct validity [32]. Table 1 shows a comparison be-
tween the four different kinds of validity presented in this article: external, ecological, internal,
and construct validity, along with factors that may negatively affect them. See also Wilson et al.
[87] or Bordens and Abbott [10] for an overview with more examples.

There is no easy way to choose the right operationalization, but you should expect to spend a
significant amount of time at this stage and brainstorm different possibilities before settling on
your final decisions.

4.3.1 A Terminological Note. Operationalized variables involved in causal relationships be-
tween constructs are often called independent and dependent variables, mapping roughly onto the
predictor—outcome relationship between constructs, but with a special emphasis on experimental
manipulation: The independent variables are the ones that you directly manipulate as part of an
experiment, and the dependent variables are the ones that you measure as a result of (they are
“dependent on”) the manipulation.
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Table 1. The Four Types of Validity and Factors That Can Threaten Them

Claim Threatened by
External Validity The findings generalize beyond the Idiosyncratic setups, contrived activities, a
specific setup of this study. biased sample
Ecological Validity  The findings generalize to real-world ~ Unnatural contexts such as laboratories,
situations. unrealistic tasks
Internal Validity The findings are only related to the Weak experimental control, such as
constructs we are interested in. confounding variables, ineffective

randomization, inconsistent procedures
Construct Validity =~ The measured outcomes tell us about ~ Bad operationalization, weak connection
the theoretical constructs we care between theoretical constructs and
about. manipulations/measures

4.3.2  Subjective vs. Objective Measures. Generally speaking, when operationalizing a construct
into a variable, you can choose between subjective and objective measures. Subjective measures
are self-reported attitudes, thoughts, emotions, and moods of participants, collected through par-
ticipants’ verbal responses. Objective measures are behavioral indicators you can measure inde-
pendently of people’s stated opinion. The same construct can often be measured by subjective or
objective means, and it is usually good practice to use a combination of both. For example, people’s
trust in the robot can be measured using a trust questionnaire (subjective) or by measuring how
many times people look at the robot to ensure it is following them (objective).

The two main ways to implement subjective measures are through questionnaires and inter-
views. Objective measures include a broader range of possibilities; for example, you can measure
people’s decisions, reaction speed, physiological reactions, and so on. Such data are usually ob-
tained through observation, either during the study or later by reviewing video footage of the
study or via data logs from the system the person is interacting with. This system can be a physi-
cal robot in field or lab studies or a computer that administers study materials.

Deciding which measure to use requires careful evaluation of the advantages and disadvantages
of each. Self-report is easier to administer and allows you to take advantage of pre-validated and
widely adopted questionnaires from social psychology, personality psychology, HRI, and other
fields.? Whether you use an established questionnaire or need to create your own due to a lack
of established instruments, you must conduct a reliability analysis to make sure that your survey
items have good internal consistency and report this analysis. Internal consistency in this context
means that the survey items intended to measure the same psychological construct (e.g., “perceived
trustworthiness”) are indeed closely related as a group. The most widely used measure of reliability
is Cronbach’s alpha, and many consider a Cronbach’s alpha of .70 or higher necessary to justify
calculating a composite score from multiple items. However, some advocate for more nuances in
deciding what a minimally acceptable Cronbach’s alpha should be [8].

That said, self-report has its own set of problems. For instance, people’s responses can be
strongly influenced by wording, format, context, and their mood [69]; they might be inclined to
provide socially desirable responses to portray themselves in a more positive light [82]; and, per-
haps most importantly, in the real world, people do not go about their everyday life by filling out
questionnaires—it is people’s actual behavior that ultimately matters [87]. Therefore, an objective
measure is often more convincing, interesting, and generalizable to the real world.

21t is almost always preferred to use a previously validated questionnaire than to make one up. A previously validated
questionnaire can help ensure the construct validity of your research and promote reproducibility.
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But behavioral measures also have important limitations. For instance, some behaviors may be
performed in private or specific contexts and cannot be easily observed by researchers. Moreover,
the same behaviors may arise due to different reasons, so it is not always clear what a behavior
actually reveals—for instance, one may stand closer to a robot either because they feel safe or
because they are curious and want to inspect it more closely to form an opinion. Finally, when
one is interested in understanding the underlying cognitive processes and mechanisms, such as
what psychological processes mediate the effect, subjective measures provide a window—albeit an
imperfect one [60]—to people’s underlying mental states.

Given the strengths and weaknesses of subjective and objective measures, a general recommen-
dation is to include both types of measures to corroborate your findings whenever possible [7].
However, be prepared that these two types of measures may sometimes lead to weakly correlated
and even inconsistent results, which can seem puzzling at first glance but can be very informative
and revealing in many cases (see Dang et al. [21] for a discussion).

As with all of the study design decisions, make sure to explicitly consider and discuss different
measurement options during your study design phase and to describe the resulting decision and
reasons for your choice in the research paper.

4.3.3  Quantitative vs. Qualitative Methods. Note that the above distinction between subjective
and objective measures is not the same as that of qualitative vs. quantitative measures, although
they are often confused. Quantitative measures require “the reduction of phenomena to numerical
values to carry out statistical analyses”; by contrast, qualitative research often involves collecting
data in the form of naturalistic verbal reports, and the analysis is textual [74]. Therefore, collecting
numerical trust ratings from a questionnaire is a quantitative method, whereas coding trust-related
themes from a participant’s interview transcript is a qualitative method.

For illustration purposes, let us operationalize the construct of “psychological safety” into each
of the four classes of variables (subjective/objective X qualitative/quantitative). Giving participants
a scale questionnaire asking about their sense of safety would be a subjective quantitative measure.
Interviewing them about their sense of safety and bringing up quotations and themes uncovered
in the interview is a subjective qualitative measure. Counting how many times they look at the
robot using data from a motion-tracking system or taking the median distance during the walk
would be objective quantitative measures. Finally, describing participants’ body language verbally,
in a phrase such as “when first entering the room, people tended to avoid getting near the robot,”
is an objective qualitative measure.

With the development of automated text analysis tools, researchers now also have the option
to use quantitative methods on textual data, somewhat bridging the distinction between quantita-
tive and qualitative methods. For more details on these automated content analysis methods, see
Section 10.

5 PLANNING THE STUDY PROCEDURE

Once you have a set of hypotheses operationalized into variables, the next step is to plan the
particulars of the study. The outcome of this process is usually summarized in a “Procedure” section
of your research paper.

5.1 Writing a “Stage Script”

When planing the study procedure, it is recommended to be explicit about every aspect of your
procedure. Consider preparing your study protocol as writing a “stage script” for a play: What
“props” do you need? How will you set up your “stage”? What should happen, step by step, from
the moment your participants enter your space (be it a laboratory, a field site, or a website) to the
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moment they exit? How will you securely store participants’ data after they complete your study?
When situations deviate from your plan—which may range from an uncooperative or inattentive
participant to a malfunctioning device—what is your contingency plan? Your protocol needs to
cover all of these issues.

Obtaining consent is another aspect of this script that requires some planning. While the in-
formed consent procedure is similar in many laboratory studies involving adults, certain studies,
such as those involving deception, recruiting participants from a public space, or working with
vulnerable populations (e.g., children) may necessitate alternative consent procedures. These pro-
cedures need also to be accounted for during the planning stage.

In addition to specifying how the experimenter should verbally introduce the task (“Tell the
participant: This is the robot you will be working with for the next hour”), your protocol also needs
to include “stage instructions” for the experimenter, such as where to meet participants, how to
orient them in the lab space, when to prompt participants for questions (“At this time ask the par-
ticipant if they have additional questions”), where to direct participants to fill out a questionnaire,
and so on. We have seen well-written study scripts that include instructions like “Pause here and
look at the participant to make sure they are following the instruction” and “Point to the robot at
this moment.” Including such information in your study script will allow your experimenters, or
“actors,” to take the procedure document and know exactly how to run the experiment without
adding personal interpretation or subjective deliberation. If two or more experimenters are going
to run the same procedure with different participants, as will often happen in lab or field studies,
then you also need to provide standard training to ensure that the way they each handle your
study procedure, both verbally and non-verbally, is comparable.

When specifying the procedure, be aware that researchers can unintentionally transmit their
expectations to participants through inadvertent cues such as nonverbal behaviors. These cues
may skew participants’ responses toward a particular result that the experimenter desires. There-
fore, researchers need to put various measures in place to prevent such experimenter expectancy
effects. One solution is to keep the experimenter from knowing the experimental condition they
are administering. When it is impossible to keep the experimenter blind to the condition—likely
because they must know a participant’s condition to administer it—an alternative solution is to
have one experimenter deliver the manipulation and then be replaced by another experimenter,
who is blind to the condition, to finish the study procedure. If that is not viable, then orienting
participants to face away from the researcher while participating in the experiment can also help.
An additional way to mitigate expectancy effects is for experimenters to tell participants that they
did not themselves develop the robot technology but are truly interested in how well it works.

Writing a good study protocol takes considerable effort. It is almost guaranteed that you will
overlook some important details in your first draft. Therefore, you should ask all collaborators and
experimenters to read your draft and try to find overlooked issues in the proposed procedure. You
also need to pilot your procedure on a few participants to make sure that your protocol makes
sense to participants (see the next section). The more meticulous you are at this stage, the less
likely it is that you will have to restart your study mid-way. In many cases, the institutional review
board—an administrative office that reviews your study to protect the rights and welfare of human
research subjects, or the “IRB” for short—also wants to see a detailed procedure before issuing their
approval.

5.2 Piloting

As you are developing the procedure, you will start to pilot it. Piloting is so important that it de-
serves its own subsection. Even if you have spent weeks on study design and procedure debugging,
there may be things you are not taking into account or simply cannot predict when developing
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your study without feedback from real participants. For instance, participants might find your
study setup unbelievable, your instructions confusing, or your study design ineffective in manip-
ulating the construct you actually aim to study (see also “Manipulation Check” below). Once you
pilot your procedure with a handful of volunteers as participants, you may uncover unexpected
glitches that often require you to modify your script. Piloting is an illuminating and crucial step
in study development. Researchers who do not pilot their procedures often end up aborting their
experiments mid-way and wasting valuable participant time and payment. If you are working on
a deadline, then this becomes doubly disappointing.

There is an additional source of frustration that can be alleviated with piloting. Too often, re-
searchers spend months on a costly experiment only to discover that none of their hypotheses
were supported. To protect against this, there is a temptation to measure a large number of con-
structs and later engage in questionable practices such as HARKing or cherry-picking that inflate
the study’s false-positive rate [58]. In some cases, this lack of evidence happens due to oversights
in the procedure or measures that could have been identified and redressed had they run a pi-
lot study. In other cases, a pilot study could have suggested that the hypotheses are not likely to
be supported. In both cases, a pilot or exploratory study can provide a more solid foundation for
strong hypotheses.

When you write up your paper, you should never report pilot study findings as if these are your
real experimental data or mix the data together into one pool. While this is especially true if you
modified your procedure after the pilot, pooling the pilot and subsequent findings together is bad
practice in any case, as it introduces vagueness into the literature. You may, however, report a pilot
study in a separate section before reporting your actual study, especially when the pilot critically
informed your final study design. In this case, the description of the pilot study and findings are
helpful in justifying your design decisions.

5.3 Manipulation Check

The act of setting the level or value of a predictor variable in experimental studies is often referred
to as the manipulation. To confirm the effectiveness of a manipulation, including a manipulation
check is another important, but often overlooked, aspect of the experimental design.

When your predictor construct is a simple fact, like the height of a robot, it is easy to claim that
you have successfully manipulated your predictor construct if you use a tall robot versus a short
robot. However, if you hope to manipulate people’s psychological states such as fear of robots,
then it is important to provide direct evidence that your study design is effective in manipulating
the predictor construct that you aim to study.

You usually report the result of your manipulation check at the beginning of your results sec-
tion before reporting your tests of any actual hypotheses. Manipulation checks are informative
regardless of whether or not you find your hypothesized effect. When you find a difference in the
outcome variable across different conditions, your peers want to see evidence that such a finding
is caused by the successful manipulation of your predictor construct (e.g., fear of robots). When
you do not find the effect you hypothesized, you need to diagnose whether it means your hypoth-
esis might be wrong or because you failed to manipulate the predictor construct that you want to
study. In the latter case, you cannot draw any conclusions about your hypothesis, and you need
to restart your study design.

6 SAMPLING

A final important decision to make between completing your procedure and running the study
is how many data points you would like to collect and what population will participate in your
study.

ACM Transactions on Human-Robot Interaction, Vol. 10, No. 1, Article 6. Publication date: October 2020.



A Primer for Conducting Experiments in Human—Robot Interaction 6:15

Table 2. Type I and Type Il Errors and « and S Rates

Your test statistic passes the Your test statistic does not

critical value pass the critical value
Type I Error No Error
There is no effect in the population (false positive) (true negative)

happens at a rate of @

No Error Type II Error
The effect exists in the population (true positive) (false negative)
happens at a rate of

6.1 Sample Size and Statistical Power

In the past, it was common for researchers to decide their sample size based on intuitions, prior
practice, rules of thumb, or practical constraints [2, 4]. In the wake of the replication crisis in the
social and life sciences, more and more publication venues expect their authors to justify their
sample size with a more statistically sound method—usually a power analysis. To understand this
concept, we need to start with the fundamental idea of the sampling process and the types of errors
that it introduces.

6.1.1 Inferring from a Sample about the General Population. To know for sure whether any hy-
pothesis is true or false on a general population (e.g., all humans, or people working with robots),
you would need to measure every single person of that entire population. However, in most cases,
this is infeasible. Instead, researchers infer a probable answer to this question by sampling a subset
of the population, measuring how the sampled participants behave in different experimental con-
ditions and then using statistical tools to determine whether the effect measured in the sample is
sufficiently large to support their hypothesis. To determine what constitutes a “sufficiently large”
effect, one needs to set a threshold in advance, which is also called the critical value of the test,
and they can only declare the hypothesis supported by the sample when the difference is above
the threshold.

Why is having a predetermined threshold necessary? Why can someone not just declare that
their hypothesis is supported when they have observed any difference between the means of dif-
ferent conditions? The reason is that, when making inferences about a general population from a
sample, two types of errors may occur.

6.1.2  Type | and Type Il Errors. Let us go back to the navigation algorithm example. You want
to know whether people trust your algorithm more than the state-of-the-art algorithm. You oper-
ationalized trust as a subjective quantitative measure obtained through a validated trust question-
naire. Then you recruited 40 participants and randomly assigned them to walk alongside a robot
with either your algorithm or the baseline algorithm before completing the trust questionnaire.
As you have suspected, people’s average trust levels for the two algorithms are indeed different—
specifically, people rate their trust in your algorithm, on average, by one scale-point higher than
in the baseline algorithm. Is it time to conclude that you have obtained “empirical evidence” sup-
porting your hypothesis about the general population? Not necessarily.

Since your sample constitutes only a subset of the population, such an inference might either be
correct or incorrect (see Table 2). It might be that there is actually no difference between the general
population’s trust level elicited by the two algorithms—yet you have detected a difference merely
due to variation introduced through sampling. This is called a Type I error or a “false positive.”
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To avoid publishing findings that are untrue, a threshold (critical value) for the effect is needed.
The higher the threshold, the lower the rate of Type I errors—known as the alpha level (). The
conventional, yet somewhat arbitrary, alpha level in many fields is .05, although recently there
have been calls for lower alpha levels [6].

Why not set your critical value so high as to achieve a very low alpha level and minimize the
chance of producing false positives? The reason is that, as you increase your critical value (and
thereby lower your « level), you may inadvertently commit a Type II error, producing a “false
negative”: Your algorithm may actually have an effect on trust in the general population, yet you
mistakenly declare that there is no effect because your threshold is too high. The rate at which
you commit a Type II error is commonly labeled f. You can easily see this tradeoff between Type I
error (false positive) and Type II error (false negative): The lower you set your alpha level to avoid
a Type I error, the higher the rate of a Type II error becomes (sample size being equal).

6.1.3  Statistical Power. Understanding sampling and sampling errors, we can now turn to the
concept of statistical power. The power of a test is the probability that if there is an effect in the
general population, then your test will be able to identify that effect in the sample. It is therefore
simply 1 — 3, the complement of the Type II error rate. Intuitively, you want more power in your
study, so that you do not miss your discovery and abandon a fruitful project after working on the
study design for months.

Several factors influence the power of a study: the alpha level, the effect size, and the sample
size. For a given level of alpha and a given sample size, if your manipulation has a large effect size,
then the power of your test is higher than if it had a small effect size. For a given effect size and a
given alpha level, the only solution to gain sufficient power is to increase your sample size.

Traditionally, HRI studies have used relatively small sample sizes. Many researchers did not
realize that a small sample size, such as 15 participants per condition for a between-participants
design with two conditions, would result in a low power of .26 even with an effect size of d = 0.50.3
That is, if your algorithm actually has a meaningful impact on people’s trust toward the robot, with
a total of 30 participants, then three of four times you run the experiment you will not obtain a
p value smaller than .05 to support your hypothesis. Beyond lowering your chance of making a
discovery, even when you do report a statistically significant result, a small sample size will also
raise questions as to whether your effect truly exists, because an observed significant result is more
likely to be a false positive in an under-powered study than in a sufficiently powered study.

6.1.4  Power Analysis. To determine the target sample size, you need to conduct a power analy-
sis. This method requires you to specify two numbers for your study: the desired statistical power
and the expected effect size. It is conventional to consider .80 a reasonable power for an experi-
ment [15, 16]. To estimate your effect size, you may look up previously published research or con-
duct an exploratory study. Alternatively, you may have to assume an effect size when performing
your power analysis, because even in this case, power analysis can be informative. For instance,
suppose that you expect an effect size of d = 0.50. Using a between-participants design with two
conditions, your power analysis shows that you will need 64 participants per condition, or 128 in
total, to reach an 80% chance to detect an effect at « = .05. You may consider using other study
designs, such as a within-participants design with repeated measures, to bring the required sample
size down. You can find many toolkits that can help you perform power analysis and determine
your target sample size.

3Cohen’s d has been a popular measure of effect size when comparing the means of two samples using a ¢-test. Tradition-
ally, d = 0.50 is often considered as a “medium” effect size upon Cohen’s recommendation. However, Cohen’s recommen-
dations are inconsistent across different statistical tests. See a summary on the number of participants needed to reach a
“medium” effect size, given different statistical tests, in Correll et al. [19].
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Typically, you report your power analysis under the “Participants” heading in your “Method”
section. Here is a template that you can follow: “We recruited 128 participants in total, which would
allow us to detect an effect size of d = 0.50 with .80 power at an alpha level of .05 (calculated using
the GxPower software [29].)”

Finally, even if you decide not to run a power analysis and just use a rule-of-thumb sample
size, you still need to determine and declare your sample size before you run your study. It is
unacceptable to first run some participants, look at the results, and then decide whether you will
add more participants to obtain significant results. This practice has been shown to dramatically
inflate your Type I error rate from the claimed alpha level [71].

6.2 Sample Population

You should also consider what population you are drawing your samples from and justify it in
your research paper. If you intend to study what you believe is generally true for every human,
then ideally you want to draw a random sample from the whole population of humanity. How-
ever, researchers rarely, if ever, meet this ideal. Most studies rely on so-called convenience samples,
which may be undergraduate students, as there are many of them in the vicinity of researchers.
Recruiting online participants on crowdsourcing platforms can increase the diversity of your par-
ticipants beyond college campuses, but workers who self-selected to use these platforms are not
representative of the population, either [14, 64]. For in-person studies, you may be able to collect
a more diverse sample than only college students by conducting a study in the field or by putting
more effort into recruiting community members outside the university. Even then, you are still
constrained by specific cultural or societal contexts that may not be representative of “humans”
in general. As a result of these limitations, Henrich et al. [39] noted that most research studies
use samples that are “drawn entirely from Western, Educated, Industrialized, Rich and Democratic
(WEIRD) societies,” who are “particularly unusual compared with the rest of the species.” This
negatively impacts the external validity, or generalizing capacity, of findings from these studies to
other cultures and societies.

In some cases, you want to exclude participant groups from your sample. This should be prin-
cipled and explicit. You may have additional selection criteria, such as language skills or prior
experience with robots. Decide on these criteria before you sample and list the exclusion con-
siderations in your paper. Make sure that every experimenter running the study is aware of the
previously determined exclusion criteria and adheres to them. If you decide to exclude a partic-
ipant post hoc, then this should also be clearly justified in your writing. Discarding participants
post hoc without explanation should be avoided.

7 RUNNING THE STUDY

Running the study boils down to measuring the variables you have defined using the procedure
you have ended up with after many iterations of piloting and revising. This section is short—
perhaps surprisingly so. The reason is that, once you have a strong basis behind your study design
and a carefully refined procedure, running the study should be an almost robotic endeavor. Every-
thing should be perfectly laid out for experimenters to run the study, no matter if there is a single
experimenter, possibly you, or a team of experimenters taking shifts running the study instead of
you. The bulk of this section emphasizes some aspects of running a study that were not covered
above.

7.1 Pre-registration

In an effort to combat problematic research practices that can inflate false positives, such as cherry-
picking results, HARKing, and arbitrary decisions on sample size and statistical analyses, there is
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an increasing expectation for researchers to commit to their research questions and analysis plans
before collecting data. This practice is called pre-registration [62, 83].

Pre-registration usually includes the full set of hypotheses, research materials, procedure, sam-
ple size and justification, exclusion criteria, and choice of statistical tests. There are many online
services that support pre-registration, such as the Open Science Framework (OSF), the AEA Reg-
istry, EGAP, AsPredicted, and trial registries in the WHO Registry Network. Some pre-registration
websites provide a template, but researchers need not adhere to one; the key thing is to make clear
which aspects of the study were specified in advance.

7.2 Informed Consent

Most publication venues and research institutions require an informed consent procedure, which,
at a minimum, includes a document that participants sign and steps ensuring the voluntariness
of their participation, the privacy and confidentiality of their data, and other protections. Please
consult with your institution’s ethics review board (IRB) and your target publication venue for
their requirements.

Ethics approval can take a long time, spanning several weeks or even months. Submitting a
request for approval also generally requires that all of the documents discussed in previous sections
be completed. Take this into account as you plan your study timeline.

7.3 Random Assignment

If you are conducting an experiment, then you have to randomly assign participants to conditions.
This applies to both between-participants designs, where you assign participants to one of the
experimental conditions, and within-participants designs, where you counterbalance the order
of the experimental conditions. The importance of random assignment cannot be overstated in
empirical research, as it provides the logical foundation of any claim to causality.

Random assignment precludes the possibility of participants self-selecting into a condition. In
addition, the experimenter should not use a systematic, non-random process to generate the as-
signment, such as assigning participants in the morning to one condition and those in the after-
noon to another, or systematically alternating between two conditions. Such practices introduce
confounding variables (like time of day, participant preference, or experimenter bias) and under-
mine the internal validity of your research.

There are many valid ways to perform random assignment.* When using a digital survey, you
can use the randomizer provided by common survey platforms. Alternatively, you may rely on
random number generators found online to create a spreadsheet specifying the order of your con-
ditions (in a within-participants design) or what condition each participant should be assigned to
(in a between-participants design). Given the critical role of random assignment in empirical re-
search, we recommend our readers to familiarize themselves with common techniques to choose
one that works for their study design. For a practical guide, see the “Random Assignment” chapter
in Coleman [17].

7.4 Debriefing

After the study is finished, the experimenter should inform participants about the nature of the
research. This is especially important when the study involves deception or incomplete disclosure
of information, because debriefing serves important ethical functions such as to identify any

4Strictly speaking, what most researchers refer to as random assignment is actually pseudo-randomization that meets
several additional constraints—such as ensuring equal number of trials in each condition and avoiding long runs of trials
from the same condition [81].
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unforeseen harm, discomfort, or misconceptions and arrange for assistance as needed. Moreover,
by probing participants’ reactions and responses, researchers can identify procedural problems,
effectiveness of manipulations, participant suspiciousness, and so forth [75]. And, finally, because
many participants are college students, debriefing also provides educational benefits, such as
insight into HRI research.

7.5 Logging

Finally, you should keep a study log, in which you track an identification number for each partici-
pant along with the condition they are randomly assigned to. After completing the study procedure
with each participant, you will update this log regarding their study date, time, and experimenter
(in the case that there are several experimenters), as well as document any unusual events for each
participant. Similarly, keep as many written records and computer logs from each run as possible
for later review, in case any future concerns arise.

8 STATISTICAL TESTS

If you collected quantitative data, then statistical tests can help you make claims about your re-
search questions and hypotheses. There are large volumes written about inferential statistics, and
there continue to be active debates over their use. A scholar usually requires many years to achieve
a full appreciation of this topic, and we cannot do justice to the complexity of this issue in a single
section.

With that disclaimer in mind, we will try to present here some of the more popular and useful
statistical methods and when they are appropriate in an HRI study scenario. We will also try to
address common misunderstandings and misuses of these tests. You are highly encouraged to read
further about any particular statistical test, and its assumptions that you need to satisfy, before
using it for your research.

8.1 Descriptive Statistics

The following sections focus on inferential statistics, which is concerned with using statistical
tools to make claims about hypotheses. Before jumping in, it is worthwhile to mention that a
study report should also include descriptive statistics, which do not directly test your hypotheses
but describe the collected data, usually grouped by condition.

The most commonly reported descriptive statistics relate to the central tendency of the data,
most often presented by the mean (average), abbreviated with the letter M, but sometimes also by
the median (a number relative to which 50% of the data are lower or equal) or the mode (the most
commonly measured value). In addition, the variance of the data is usually presented, often in the
form of the square root of the variance, called standard deviation (abbreviated as SD). Furthermore,
the range of the data can be described, in terms of the minimum and maximum values detected.
More detail can be given by specifying the quartiles of the data points, which represent a four-way
division of your data, similar to the median but more precise. More advanced features, such as
skewness and kurtosis of the data are sometimes also reported. The latter two are often estimated
to understand how much the distribution deviates from a normal distribution, because most of
the techniques described below rest on the assumption that key aspects of the data are normally
distributed.

8.2 Student’s t-tests

When it comes to inferential statistics, one of the most popular tests in HRI studies is “Student’s
t-test” (or just “t-test”), which deals with the comparison between the means of two samples. A
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t-test compares two datasets and tries to answer the question of whether they came from the same
population.’ Usually your hypothesis is that your datasets did not come from the same population.
The reason for this is that if your experimental manipulation has an effect on a variable, then it
should create a distinct population from that of the control condition in terms of this variable;
conversely, if it has no systematic effect on participants, then the observations in two conditions
should behave as if they came from the same population.

Student’s t-tests are appropriate to use when you have exactly two groups to compare and your
measure is a continuous variable that conforms to a normal distribution.® In our example, we could
collect two datasets of how often people looked at the robot: one from people walking with a robot
running our algorithm and another of people walking with a baseline algorithm. Then we could
use a t-test to compare the means of these datasets and see whether they are sufficiently different.

There are two different types of ¢-test commonly used in HRI research: An independent sample
t-test applies to a situation where the two datasets are unpaired, which is typically the case in
a between-participants design. A pairwise t-test applies to cases where there are pairs between
two datasets that are related in some manner, such as two measurements coming from the same
participant, with each measurement placed in one of the two datasets. An independent sample
t-test evaluates the difference between the means of both groups and compares that difference
to zero, i.e., (i >a;— n—lb 2. bj) © 0, whereas a pairwise evaluates the mean of the differences

between two observations in each pair and compares that mean to 0, i.e., %Z(ai -b;))© 0.In
the walking robot example, we would use an independent sample t-test if every participant only
walked with one type of algorithm (i.e., a between-participants design) but a paired ¢-test if each
participant experienced both algorithms (i.e., a within-participants design).

You may also decide whether you use a one-tailed or two-tailed test. Unless you have strong
reasons to hypothesize a directional difference (e.g., the number of gazes with our new algorithm
is greater than the number of gazes with the baseline algorithm), you should use a two-tailed test
(e.g., gaze count with our algorithm is different from the that of the baseline algorithm) and make
sure to include this decision in your pre-registration and research paper. Do not use t-tests when
you have more than two conditions. This requires a test called “Analysis of Variance” (ANOVA).

The test itself involves calculating a so-called t-value or t-ratio, which is the ratio between the
actual difference between the two means found in your sample and the difference you would expect
just from random variation. The higher the t-ratio, the more confident you can be that your means
are different due to something inherent in the conditions. The p-value associated with your ¢-ratio
is the probability that you would find a t-ratio as large or larger than the one you found only due
to unrelated sample variation. The larger the t-ratio, the smaller the resulting p-value.

You generally report t-ratios and p-values along with descriptive statistics. Many publication
venues expect researchers to report effect sizes in addition to precise p-values. For t-tests, one
common effect size metric is Cohen’s d, which is the difference between two means divided by a
standard deviation measure for the data [15].

8.3 One-way ANOVA

The one-way ANOVA test can be used to compare the means of more than two groups. For in-
stance, if we were to compare across three conditions (one group of participants would walk with
our algorithm, one with the state-of-the-art baseline, and one with a teleoperated robot), then

SFormally, a £-test can also compare a single sample dataset with a value, but we limit our discussion here to two-condition
t-tests.

®If you are dealing with non-normal distributions, then a large-enough sample size could allow you to use a ¢-test; other-
wise, use non-parametric tests.
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we would use a one-way ANOVA. Just like the ¢-test has a test statistic called the t-ratio, the
statistic of a one-way ANOVA is the F-ratio. This is (roughly speaking) the ratio between the
mean variance-between-groups and the mean variance-within-each-group. Again, the higher the
F-ratio, the more different your study groups are. Therefore a higher F-ratio, for a given number
of degrees of freedom, results in a lower p-value and suggests that the groups are more likely to
be different. For F-tests, effect sizes are usually reported as partial eta-squared (ryf,), which is the
proportion of the variance in the outcome variable accounted for by the predictors, although some
argue that omega-squared (w?) is a less biased, and thus preferred, effect size measure.’

In practice, one-way ANOVA is the multi-group equivalent of an independent ¢-test. It is not
the correct test to use when data from different conditions are related, for example, in a within-
participants design. In this case, you would use a repeated-measures ANOVA.

The F-ratio of a one-way ANOVA does not tell you which of the three or more groups are dif-
ferent from each other, only that they are not all the same with respect to the measured variable.
To further understand the relationship between groups, you need to use either planned contrasts
or ad hoc pairwise comparisons between the three or more conditions. Planned contrasts are ap-
propriate when you have specific hypotheses about the differences between certain conditions, so
you plan these contrasts ahead of time and pre-register your plan before running your study. For
example, you may hypothesize that there is a difference between the group who experienced your
algorithm and both of the baseline groups (i.e., the group walking with a teleoperated robot and
the group walking alongside the state-of-the-art algorithm), but you do not care whether there is
a difference between these two baseline groups.

However, ad hoc pairwise comparisons simply compare each of the conditions to every other
group after running the ANOVA. When you run pairwise comparisons, you need to be careful to
avoid the “multiple comparisons problem,” because the more comparisons you make, the more
likely that at least one comparison will reach your predetermined alpha level (say, .05) merely due
to random sampling error. To combat this problem, you should use corrections, like the Bonferroni
correction, or “honest” tests, such as Tukey’s HSD (honestly significant difference) test. The details
of these are outside of the scope of this primer; for more information, see Coolican [18].

A final note on the one-way ANOVA is that it is not appropriate when there are two or more
predictor variables. This requires a factorial ANOVA.

8.4 Factorial ANOVA

A study designed to investigate the effect of two or more predictors simultaneously is also called a
factorial design. In this case you need to use a factorial ANOVA. The factorial ANOVA methodically
evaluates the effects of each predictor construct on your measured outcomes, as well as interactions
among predictors.

One example of a factorial ANOVA is the two-way ANOVA. It has two factors, which results in
three evaluations: the main effect of each factor and their interaction. In our example, you could ask
what the main effect of the adaptive algorithm on trust is, what the main effect of dog ownership
is, and what the interaction effect is.

When an interaction effect is detected, you should be careful in describing your main effects.
In many cases, you may wish to know whether a factor has a significant effect on the outcome
variable when the second factor is held at a specific level. For instance, you may wonder whether
your new algorithm works better than a control algorithm for dog owners and for non-dog own-
ers, respectively. To answer these questions, you need to test for “simple effects” by comparing
your algorithm against the baseline algorithm at each given level of the dog ownership dog

"https://daniellakens.blogspot.com/2015/06/why-you-should-use-omega-squared.html.
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factor (see Section 14.3 in Gravetter et al. [35] for more information). Importantly, you should
not describe your significant interaction as if you are describing two simple effects—you need to
actually perform simple effects tests order to make such claims.

Sometimes, you may need to include more than two factors in your factorial design. For in-
stance, a three-way ANOVA has three factors and thus seven evaluations: the main effect of each
factor, each of the three two-way interactions, and one three-way interaction. The more factors
you include, the more complicated it becomes to interpret interaction effects. Therefore, in prac-
tice, researchers rarely manipulate more than three factors in their studies.

8.5 Linear Regression

Constructing linear regression models is a useful alternative to the above-mentioned tests, and
while it is increasingly common in some behavioral research communities, it is currently underuti-
lized in the HRI literature. This approach is founded on the insight that ¢-tests, one-way ANOVAs,
and factorial ANOVAs are all special cases of a general linear regression model. Using regression
analysis can help ensure consistency in analyzing and comparing results across studies. It also
offers a straightforward way to control for confounding variables.

The regression model is stated as a linear relationship between your predictors and your out-
come with some exogenous “noise” €:

y; = Po + Pix1i + Poxzi + -+ + Puxni + €. (1)

Here, xy; is the value of the first predictor variable in the ith data point, x;; the value of the
second predictor variable in the ith data point, and so on; f; is the coefficient of the first factor, and
so on; €; is the unmodeled “error” or “noise” for that data point; and f is the so-called “intercept,”
representing a baseline value. The predictors xi; can be either continuous or categorical. In the
case where a predictor has two conditions, such as when one would usually use a t-test, the values
of x are either 0 (for Group A) or 1 (for Group B). The coefficients then turn out to simply be the
mean for Group A (fy = pu4) and difference between the group means (f; = pup — pa):

Yi = pa+ (U — pa)xi + €5 x; € {0,1}. (2)

Two-way ANOVAs can be represented by two categorical variables, x; and x;. To model inter-
actions, you would multiply two factor variables and assign them a third interaction coefficient:

Yi = Po + Pix1i + Poxoi + PineX1iXoi + €;. (3)

Here, f; represents the magnitude of the effect of our algorithm, and f3; represents the magnitude
of the effect of dog ownership, while f;,; represents the interaction between these two factors.

To control for confounding variables such as, for example, the time of day a person participated
in the study, you can add that time variable as an additional additive term in your linear model
(for instance, coding morning = 0 and afternoon = 1) and mention that you “controlled for the
effect of time” when you report your results. You generally do not report the coefficient related to
the controlled variable. In the case of within-participants design, you can also construct a multi-
level linear model to control for the interdependence among repeated measures within the same
participant, which is generally recommended over repeated-measures ANOVA given that it can
accommodate more complex designs.

With this very brief introduction, we highly encourage the reader to further study this pow-
erful and general tool, as it could make for more consistency in the statistical analysis used in
HRI experiments. For information on how to run linear regression models, please see James et al.
[43]. When repeated measures are employed, tutorials such as Judd et al. [45] and Singmann and
Kellen [72] provide information and software listings for multilevel linear models.
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8.6 Chi-Square Tests

If your outcome variable is categorical rather than continuous, then you can use a chi-square (y?)
test. In our example, you may ask all participants to choose which of the two algorithms they trust
more. To find out whether more people prefer your algorithm over the other one, you would need
a y? goodness-of-fit test. This test examines how closely the distribution of your data matches the
expected distribution of a population under an adversarial null hypothesis—for instance, the two
algorithms are preferred by an equal number of people. In this case, the y? test asks the following:
How different are your data from an even distribution (a 50-50 split in the case of two levels)? If
the actual frequency in each cell considerably deviates from what you would expect from the null
hypothesis, then you will get a large-enough y? value, which in turn would lead you to reject the
null hypothesis (e.g., 50-50).

When you have a second variable—for instance, dog ownership—and you want to examine
whether dog ownership influences people’s algorithm preference, you will need a y? test for in-
dependence to test the relationship between these two variables. The spirit of a y? test for inde-
pendence is the same as the goodness-of-fit test, except that now you compare the distribution
of people’s algorithm preference across levels of the second variable (i.e., dog owner vs. non-dog
owner), and the y? score describes the interaction between two variables. It is worth noting that
you can also analyze binary outcome variables with logistic regression, but this is beyond the scope
of this article (see James et al. [43] for more information).

8.7 Rank Tests

In some cases, you cannot in good faith make the required assumptions to run the above-mentioned
tests. For example, sometimes the distribution of your data severely violates the assumption of
being normally distributed, or you used a non-uniform ordinal measure (one where the difference
between adjacent values is likely to be unequal). In these cases, you need to use non-parametric
tests.

One common example of non-parametric tests are rank tests, where you only compare the rank
of outcomes rather than their numeric values. When you only have one predictor with two levels,
you may use the Mann-Whitney U-test (a non-parametric equivalent of the independent sample
t-test) or the Wilcoxon Signed Rank Test (a non-parametric equivalent of the paired ¢-test), de-
pending on whether your two samples are independent or paired. The spirit of rank tests is very
similar to that of the t-tests, except that instead of directly comparing the means of your outcome
data in each group, you rank the outcome data and then compare the means of the rank order
between two groups to determine whether they come from the same population. Therefore, rank
tests are more lenient.

Similarly, the Kruskall-Wallis H-test is the rank version of the one-way ANOVA test discussed
above. It also loosens the requirement for normal distributions and is useful in cases where you
are interested in the comparative rank of your measured variables.

8.8 Assumptions of Statistical Tests

All of the above-mentioned statistical tests are only valid given certain assumptions. For exam-
ple, ANOVA assumes independence of observations, a normal distribution of residuals, and ho-
moscedasticity of variances. There exist statistical methods that check for violations of these as-
sumptions. While it is beyond the scope of this article to describe all of the assumption tests in
detail, researchers should be aware about these assumptions and check them before using a given
statistical test.
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9 REPORTING RESULTS

Reporting the results in a complete and consistent fashion ensures that your readers can accurately
evaluate your work and findings. Too often authors use unconventional or confusing presentation
methods when reporting test results or omit important details about their results or the way the
results were calculated.

Just as completeness is important when reporting your hypotheses, constructs, and procedure,
you need to report all statistical tests regardless of statistical significance. This, in combination with
the pre-registration principle mentioned above, can help reduce “researcher degrees-of-freedom”
such as cherry-picking and p-hacking [59].

9.1 Reporting Templates

To support consistency, it may be useful to provide some reporting templates for the common
tests presented above. These are adapted from Field et al. [31]. Please refer to this source or other
statistics references for the reporting of descriptive statistics such as the mean, standard error,
standard deviation, effect sizes, and the determination of degrees-of-freedom.

Template for ¢-test: “To test Hypothesis H1, we ran an independent samples ¢-test. Consistent
with our hypothesis, participants rated their trust in robots higher when the robot was running
our adaptive algorithm (M = 5.64, SD = 1.47) compared to the baseline algorithm (M = 4.86,SD =
1.62), £(102) = 2.54, p = .013,d = 0.50.”

Template for one-way ANOVA: “To test Hypothesis H5, we ran a one-way ANOVA and found
amain effect of robot algorithm on mean distance from the robot: F(2, 147) = 7.27, p < .001, w? =
.077. Post hoc multiple comparisons using Tukey’s HSD further showed that our algorithm (M =
56.12 cm, SD = 1.19) resulted in higher distance than Baseline 1 (M = 46.12 cm, SD = 1.73),t =
3.23, SE = 0.31, p = .004, and Baseline 2 (M = 45.77 cm, SD = 1.62), t =3.39, SE =0.30, p =
.003. The two baselines did not differ, t = 0.17, SE = 0.30, p = .99.”

Template for linear regression: “To test Hypothesis H2, we ran a regression with the algo-
rithm type and robot speed as predictors, controlling for participant fear of robots. Algorithm type
positively predicted people’s sense of safety score (f = .39, t(178) = 2.71, p = .004), while robot
speed did not (f = .002, t(178) = 1.07, p = .14). We did not detect an interaction between the two
factors (B = .013, £(178) = 0.32, p = .42).”

Template for y? goodness-of-fit test: “To test Hypothesis H3, we ran a y? goodness-of-fit
test. Overall, we found that more people preferred the robot with our new algorithm over one with
the baseline algorithm (65 vs. 39). y%(1) = 6.50,p = .011,r = .25.”

Template for Mann-Whitney U-test: “To test Hypothesis H11, we ran a Mann-Whitney U-
test. Overall, we found that people brought the robot to more trips when it was installed with
our new algorithm (M = 5.64, SD = 2.82) compared to the baseline algorithm (M = 4.77, SD =
2.51), W = 1496, p = .04,d = 0.33.”

In many cases, presenting the descriptive statistics as a graph can enhance understanding of
your results. Some researchers also opt to present inferential statistics results in a table rather
than sprinkled throughout the paper narrative. That said, it is confusing and thus ill advised to
report the same results in two places in the same article.

8Effect sizes can be reported in one of several ways. For ¢-tests, Cohen's d is the most common measure for effect size;
others support using the correlation coefficient r or Rosenthal’s r-equivalent as a more consistent measure, arguing that it
can be compared across different tests, such as correlations, #-tests, ANOVAs, and regressions [31].
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9.2 P-Values, Significance, and Effect Sizes

Conventionally, hypothesis-testing studies use a p-value threshold of .05 to determine whether a
hypothesis should be accepted or rejected. If the p-value was below the threshold, then results
were reported as “significant.” For many years, however, and more so recently, the use of the term
“significant” for findings that cross this somewhat arbitrary p-threshold is pointed out as detri-
mental to research and reliable findings [47, 59]. Some authors have suggested a more stringent
alpha level—for example, .005 instead of the traditional .05 (e.g., References [6, 44])—yet this sug-
gestion leads others to be concerned about inflated Type II errors [33]. At any rate, using the word
“significant” can be misleading, and some scholars recommend to refrain from using this term
altogether [41]. At the minimum, you should always report the specific p-values associated with
your results.

Hand in hand with the reporting of a test statistic and a p-value should be the reporting of the
effect size of your test. Keep in mind that p-values are designed to tell you whether your result
could be explained by random variation, not whether it is meaningful. With a big-enough sam-
ple size, any difference in means can reach a p-value below any arbitrary threshold. Therefore,
effect sizes are used to communicate how large of an effect you have found. Intuitively, the most
straightforward effect size seems to be a comparison between the means. However, often times it
is hard to evaluate whether a difference of 20 cm is large or small. Therefore, standardized effect
size such as Cohen’s d, partial eta-squared ryf, and omega-squared «?, r-values, and odds ratios are
designed to remove the units and allow a more consistent evaluation of your effect size regardless
of the scaling of the variables. For more information on how to calculate and report effect sizes,
see Lakens [50].

You should think about the p-value of your test and your effect size as two separate markers; the
first indicates whether you can say with some confidence that there is any effect of your predictor
on the outcome, and the second is whether it is meaningful. For example, you may find that by
using the new algorithm, people report an increase of 0.1 points on a 7-point trust scale. It can be
argued that even if that effect is supported with p = .001, the practical value of this improvement
is questionable.

Once you have measured your effect sizes, how should you interpret them? For some metrics,
you can find recommendations on what is typically considered as a small, medium, or large effect
(e.g., Reference [15]). Although these recommendations are widely circulated, you should also take
them with a grain of salt, because such recommendations can be highly dependent on specific re-
search fields and specific statistical tests [19]. For instance, in psychology, a correlation coefficient
of .50 is usually considered large, but in some physical sciences, a correlation coefficient of .99 is
expected. Therefore, depending on your field, even a statistically small effect might be theoreti-
cally meaningful and important. Ultimately, the interpretation of your effect size is up to you and
your peers as readers. Be that as it may, you should report effect sizes and address them in the
discussion of your findings.

Finally, some researchers argue that given the limitations of Null Hypothesis Significance Test-
ing (NHST, which covers most of the above tutorial) and the frequent misconceptions of p-values
[36], we should abandon p-values entirely and switch to descriptive statistics, effect sizes, confi-
dence intervals, and Bayesian statistics entirely [20, 26, 47, 79, 85]. Bayesian methods have several
advantages over NHST, such as using prior probability distributions to incorporate information
from previous studies and the interpretability of posterior probabilities [49, 84]. In light of the
ongoing debate and development in empirical disciplines, we concur that p-value “is just one of
several heuristic cues available to the data analyst” [48], and we encourage our readers to explore
Bayesian methods as the need arises.
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9.3 Post Hoc Exploratory Analysis

In many cases, there are ways to analyze the data that were not evident during the planning of the
study. Sometimes the data suggest new insights and new ways to consider your constructs. In these
cases, it is fine to add new analyses and tests. Because you have spent so much time thinking about
the study and the data, you might have gotten new ideas halfway through the project. Therefore,
this kind of analysis is often interesting as it could suggest new directions and possibly pave the
way for a follow-up empirical study (see “Where do Hypotheses Come From?” in Section 3).

However, in each of these cases, these analyses should be reported as “post hoc” or “exploratory”
and come at the end of your research paper. Post hoc findings should never be presented as con-
firming additional hypotheses.

10 LIMITATIONS

HRI is an interdisciplinary field, and its development has benefited from the wide diversity of aca-
demic interests and research practices. This primer focuses on a specific aspect of HRI research,
namely that of hypothesis-driven experimental studies. That said, we recognize that the exper-
imental approach only represents one research paradigm among many possible methodological
approaches in HRI research.

For example, we do not provide an in-depth discussion of observational and qualitative re-
search, research-through-design, and other practices that understand interaction as more dynamic
and context-sensitive than experimental research usually allows for. These non-experimental ap-
proaches can often provide deeper, more ecologically valid, and more contextually relevant knowl-
edge than experimental studies. As each type of research comes with a rich scholarly history and
consequently a long list of practical recommendations, we encourage the reader to explore exist-
ing literature on these methods to gain a broader set of tools that they can combine to conduct the
most effective research.’

Furthermore, new research tools are constantly developed and sometimes blur the line between
qualitative and quantitative methods as they are traditionally defined. Such tools may enable re-
searchers to apply quantitative analysis on rich, context-sensitive data. Consider textual analysis as
an example, a technique widely used in qualitative research to provide valuable insights into peo-
ple’s subjective experiences [23, 34, 40]. Recent years have seen a proliferation of computational
tools that enable researchers to conduct quantitative analyses on massive amounts of text. These
tools vary from the well-established Linguistic Inquiry and Word Count (LIWC) program [78] to
evolving natural language processing (NLP) and machine learning techniques such as topic model-
ing and word embedding (see Evans and Aceves [28]; also see Lee and Kolodge [52] for an example
of using topic modeling to study trust in a self-driving car context). Similarly, new computer vision-
based algorithms can be used to analyze people’s nonverbal behaviors, such as facial expressions
and body movements. Such tools allow researchers to harvest and analyze large amounts of data
in the field, essentially avoiding many of the problems associated with small sample sizes in lab ex-
periments. Although not elaborated in this tutorial, these quantitative-qualitative hybrids can help
HRI researchers study how people perceive and interact with robots beyond laboratory contexts.

Therefore, our focus on the experimental approach should not be read as a lack of endorsement
for non-experimental methods. As a field, we need to make sure that we do not weed out method-
ological diversity in the pursuit of methodological rigor and take care not to impose the standards,
research agendas, and methods from one empirical discipline onto the whole field.

9For example, you may find more information on how to conduct interviews in Smith [74] and conduct observational
studies in Adler and Adler [1] as well as in Coolican [18].
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A separate concern with the recommendations suggested in this article is whether they can
be pragmatically applied to HRI research or whether they are unrealistic ideals when it comes
to human-participant studies with robots. In some social science fields, the only limitation on an
experimental study design is the inventiveness of its authors and the cost of recruiting participants.
In HRI, researchers have to deal with the additional hurdles of prototype technologies that do not
always work, a lack of ecologically valid use-cases across diverse demographic populations due
to the fact that robots are not yet widely deployed, a lack of established systems to recruit a large
number of participants, people’s unfamiliarity with robots or their inaccurate presumptions about
robotics, and sometimes a pressing conference submission deadline. Moreover, in many cases an
evaluation study is only one of many components that a research group has to develop.

The position put forth in this article is that, even given the above-mentioned constraints, re-
searchers should be cognizant about best practices. Anyone running an experimental study should
be able to recognize potential threats to the validity of their research design and try their best to
remove those threats. When such issues cannot be realistically addressed in every HRI project,
researchers should be forthcoming in the report about their decisions and discuss the potential
limitations. In concert, reviewers and editors should respect that empirical research can be imper-
fect and that p < .05 is not the only criterion—and perhaps not even the most important one—that
should decide whether a paper is valuable or should be published.

In addition, the methodological imperatives in this article are not meant to discount the impor-
tance of past research. The HRI community has made great strides in the past few decades in a
ground-breaking field. To continue on a solid foundation, however, it is time to self-reflect and
improve the validity of our future findings.

11 CONCLUDING COMMENTS

This primer covered many topics, and the list of requirements and considerations may seem daunt-
ing at first, especially to someone just learning about experimental methods. We tried to provide
a high-level overview of the various stages of empirical research and hope we have not scared
readers unfamiliar with these methods or deterred them from conducting experiments.

On the converse side, for readers experienced in empirical research, we are aware that we gave
only a cursory view of many important concepts. In some cases, we traded accuracy and com-
pleteness for readability. We have pointed to supplementary readings for those interested in fa-
miliarizing themselves with the details of the methods discussed here. Additional pointers for more
information include the Open Science Teaching and Training Resources, '’ the resources provided
by the American Psychological Association’s Division 5: Quantitative and Qualitative Methods,!
the statistics resources from the Society of Personality and Social Psychology,'? and a useful R
tutorial by Navarro.'

One of the motivations for this primer was to improve the reliability and credibility of HRI
research going forward. In addition to providing more systematic and rigorous methodological
training to the next generation of experimental researchers, we believe there are other important
avenues to support this goal.

For one, we need more replication studies (see “How can replications become more common in
psychology?” in Shrout and Rodgers [70]). A replication crisis creates a fundamental problem of
trust. When findings that have been widely taught and cited are shown to rest on flaky ground, it

Ohttps://docs.google.com/spreadsheets/d/1kzJDrj3dtLIWOz_zRMEhgR7xx09p3pGQOLJMUVKO1A0/edit.
Uhttps://www.apadivisions.org/division-5/resources.

2http://spsp.org/resources/statistics.

Bhttps://learningstatisticswithr.com/book/.
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can cast serious doubt on previous research and undermine the public’s trust in research studies
in general.

So far, there has been relatively little systematic effort to examine whether the HRI field is subject
to the same replication issues that have shaken up many other empirical disciplines, including
psychology, medicine, neuroscience, life sciences, and economics [42]. Given the lack of systematic
methodological training, the prevalence of small sample sizes, the common practice of measuring
a large number of variables and selectively reporting a few, it seems likely that the question of
replication is one our community must tackle.

A promising avenue to address this question could be a large-scale research collaboration to
replicate highly cited studies in HRI, similar to the 2015 Science paper “Estimating the Repro-
ducibility of Psychological Science,” led by the Open Science Collaboration [63]. Another thrust in
this direction is already underway, with the recently added “reproducability” track in a leading HRI
technical conference. Yet another avenue would be to create our own research tools to facilitate
rigorous research practices in the HRI field [42], which may range from creating validated psycho-
logical instruments (e.g., the Robotic Social Attributes Scale (RoSAS), [12]) to creating community
resources that enables systematic comparisons across different robots (e.g., the Anthropomorphic
roBOT (ABOT) Database, [65]). Finally, we should also conduct more meta-analysis studies on key
topics in HRI.

Learning from the discourse in other disciplines, we know that increasing the replicability of
our findings requires researchers to spend more time and effort learning and adhering to updated
methodological practices. In HRI, we have to increase sample sizes, separate confirmatory, and
exploratory analysis in our papers and be more vigilant about common malpractices that might
inflate the rate of false positives. These changes require the entire field to act collectively, as these
practices have to be emphasized both in our own research and in the peer-review process.

As our field gains more interest, researchers in other areas and the general public look to us
to provide accurate findings that shed light on how people interact with robots. With greater
prominence comes greater responsibility to employ trustworthy empirical methods. We hope that
this article will inspire the next generation of HRI researchers to embrace empirical research with
the goal of pushing forward the edge of our knowledge on human-robot interaction.
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