
Gesture-based Human-Robot Jazz Improvisation

Guy Hoffman and Gil Weinberg

Abstract— We present Shimon, an interactive improvisational
robotic marimba player, developed for research in Robotic
Musicianship. The robot listens to a human musician and
continuously adapts its improvisation and choreography, while
playing simultaneously with the human. We discuss the robot’s
mechanism and motion-control, which uses physics simulation
and animation principles to achieve both expressivity and safety.
We then present a novel interactive improvisation system based
on the notion of gestures for both musical and visual expression.
The system also uses anticipatory beat-matched action to enable
real-time synchronization with the human player.

Our system was implemented on a full-length human-robot
Jazz duet, displaying highly coordinated melodic and rhythmic
human-robot joint improvisation. We have performed with the
system in front of a live public audience.

I. INTRODUCTION

This paper describes Shimon, an interactive robotic
marimba player. Shimon improvises in real-time while lis-
tening to, and building upon, a human pianist’s performance.
The robot’s improvisation uses a gesture framework, based
on the belief that musicianship is not merely a sequence
of notes, but a choreography of movements. Movements
which result not only in musical sounds, but also perform
visually and communicatively with other band-members and
the audience.

A. Context and Prior Work

Shimon is a new research platform for Robotic Musician-
ship (RM) [1]. We define RM to extend both the tradition
of computer-supported interactive music systems, and that of
music-playing robotics:

Most computer-supported interactive music systems are
hampered by not providing players and audiences with phys-
ical cues that are essential for creating expressive musical
interactions. For example, in humans, motion size often
corresponds to loudness, and gesture location to pitch. These
movements are not just used for tone production, but also
provide visual feedback and help players anticipate and coor-
dinate their playing. In addition, they create a more engaging
experience for the audience by providing a visual connection
to the sound. Most computer-supported interactive music
systems are also limited by the electronic reproduction and
amplification of sound through speakers, which cannot fully
capture the richness of acoustic sound [3].

On the other hand, most research in musical robotics fo-
cuses mostly on sound production alone, and rarely addresses
perceptual and interactive aspects of musicianship, such as

Both authors are with the Georgia Tech Center for Music
Technology, 840 McMillan St, Atlanta, GA, USA. Email:
ghoffman7@mail.gatech.edu, gilw@gatech.edu

listening, analysis, improvisation, or interaction. Most such
devices can be classified in one of two ways: robotic musical
instruments, which are mechanical constructions that can
be played by live musicians or triggered by pre-recorded
sequences [4], [5]; or anthropomorphic musical robots that
attempt to imitate the action of human musicians [6], [7].
Some systems use the human’s performance as a user-
interface to the robot’s performance [8]; and only a few
attempts have been made to develop perceptual, interactive
robots that are controlled by autonomous methods [9].

In contrast, in previous work, we have developed a percep-
tual and improvisatory robotic musician in the form of Haile,
a robotic drummer [1]. However, Haile’s instrumental range
was percussive and not melodic, and it’s motion range was
limited to a small space relative to the robot’s body. We have
addressed these limitations with Shimon, a robot that plays a
melodic instrument—a marimba—and does so by covering
a larger range of movement [10]. We build on these traits,
developing an expressive motion-control system as well as a
gesture-based improvisation framework, as described in this
paper.

II. ROBOTIC PLATFORM

Several considerations informed the physical design of
Shimon: we wanted large movements for visibility, as well
as fast movements for virtuosity. In addition our goal was
to allow for a wide range of sequential and simultaneous
note combinations. The resulting design was a combination
of fast, long-range, linear actuators, and two sets of rapid
parallel solenoids, split over both registers of the instrument.

The physical robot is comprised of four arms, each actu-
ated by a voice-coil linear actuator at its base, and running
along a shared rail, in parallel to the marimba’s long side.
The robot’s trajectory covers the marimba’s full 4 octaves
(Figure 1). The linear actuators are based on a commercial
product by IAI and are controlled by a SCON trajectory
controller. They can reach an acceleration of 3g, and—at top
speed—move at approximately one octave per 0.25 seconds.

The arms are custom-made aluminum shells housing two
rotational solenoids each. The solenoids control mallets,
chosen with an appropriate softness to fit the area of the
marimba that they are most likely to hit. Each arm contains
one mallet for the bottom-row (“white”) keys, and one
for the top-row (“black”) keys. Shimon was designed in
collaboration with Roberto Aimi of Alium Labs.

III. MOTOR CONTROL

A standard approach for musical robots is to handle a
stream of MIDI notes and translate them into actuator move-

2010 IEEE International Conference on Robotics and Automation
Anchorage Convention District
May 3-8, 2010, Anchorage, Alaska, USA

978-1-4244-5040-4/10/$26.00 ©2010 IEEE 582

Fig. 1. Overall view and detail view of the robotic marimba player Shimon

ments that produce those notes. In Shimon’s case, this would
mean a note being converted into a slider movement and
a subsequent mallet strike. Two drawbacks of this method
are (a) an inevitable delay between activation and note
production, hampering truly synchronous joint musicianship,
and (b) not allowing for expressive control of gesture-
choreography, including tonal and silent gestures.

We have therefore separated the control for the mallets and
the sliders to enable more artistic freedom in the generation
of musical and choreographic gestures, without compromis-
ing immediacy and safety. This section describes the two
control systems designed for safe artistic expression.

A. Mallets

The mallets are struck using rotational solenoids re-
sponding to on/off control through a MIDI interface. Eight
MIDI notes are mapped to the eight mallets, and the MIDI
NOTE ON and NOTE OFF messages are used to activate and
deactivate the solenoid.

Given this electro-mechanical setup, we want to be able
to achieve a large dynamic range of striking intensities. We
also want to be able to strike repeatedly at a high note rate.

Since we can only control the solenoids in an on/off
fashion, the striking intensity is a function of two parameters:
(a) the velocity gained from the distance traveled; and (b) the
length of time the mallet is held on the marimba key.

0 100 200 300 400 500 600

time (ms)

0.00

0.02

0.04

0.06

0.08

0.10

p
e
rc

e
iv

e
d
 v

o
lm

u
e

0/21

0 100 200 300 400 500 600

time (ms)

0.00

0.02

0.04

0.06

0.08

0.10

p
e
rc

e
iv

e
d
 v

o
lm

u
e

0/28 188/28

Fig. 2. Empirical strike/sound measurements used to build mallet models.
We show one example each for single strike measurement to estimate d↓,
d→, and im (left), and dual strike measurements used to estimate d↑ (right).

We therefore need to maintain a model of the mallet
position for each striker. In order to do so, we have empiri-
cally sampled sound intensity profiles for different solenoid
activation lengths, and used those to build a model for each
striker (Figure 2). This model includes four parameters:

• d↓ — the mean travel time from the rest position to
contact with the key,

• d↑ — the mean travel time from the down position back
to the rest position,

• d→ — the hold duration that results in the highest
intensity note for that particular mallet, and

• im — the duty cycle that results in the highest intensity
note for that mallet, when it starts from the resting
position.

Mallet

Top hard stop

Key

t = 0

x = 0

t = t!

x = t!/d!

t = d!+d"+t!!

x = t!!/d#

i = p im N/A i = p im t!!/d#

Position model x(t)

Duty cycle i for
intensity p

Fig. 3. Duty-cycle computation based on mallet position model

Using this model, each of the eight mallet control modules
translates a combination of desired auditory intensity and
time of impact into a solenoid duty cycle. Intuitively—the
lower a mallet is at request time, the shorter the duty cycle
needs to be to achieve impact, and to prevent muting of the
key through a prolonged holding time.

An estimated position x is thus dynamically maintained
based on the triggered solenoid commands, and the empirical
mallet model (Figure 3). During up-travel, x(t), with t being
the time since the last mallet activation start, is estimated as

x(t) =
t− d↓ − d→

d↑

As a result, the updated duty cycle i as a function of the
desired intensity p, is then

i = p× im × x(t)

In the above equation, we approximate the mallet position
as a linear function of travel time. Obviously, a more realistic
model would be to take into account the acceleration of the
mallet from the resting position to the key impact. Also,

583

bounce-back should be accounted for, for short hold times.
We leave these improvements for future work.

The described system results a high level of musical ex-
pressivity, since it (a) maintains a finely adjustable dynamic
striking range, and (b) allows for high-frequency repetitions
for the same mallet, during which the mallet does not travel
all the way up to the resting position.

B. Sliders
The horizontally moving sliders are four linear carriages

sharing a rail and actuated through voice coil actuators under
acceleration- and velocity-limited trapezoid control.

There are two issues with this control approach. (a)
a mechanical (“robotic”—so to speak) movement quality
associated with the standard fire-and-forget motion control
approach, and (b) collision-avoidance, since all four arms
share one rail.

1) Animation Approach: To tackle these issues, we chose
to take an animation approach to the gesture control. Based
on our experience with previous robots (e.g. [11], [12]) we
use a high-frequency controller that updates the absolute
position of each slider at a given frame rate. This controller
is fed position data for all four arms at a lower frequency,
based on higher-level movement considerations.

This approach has two main advantages: (a) for each of
the robotic arms, we are able to generate a more expressive
spatio-temporal trajectory than just a trapezoid, and we can
add animation principles such as ease-in, ease-out, antici-
pation, and follow-through [13]; and (b) since the position
of the sliders is continuously controlled, collisions can be
avoided at the position request level.

2) Slider Manager: PID and simulated springs: The
intermediate layer that handles the slider position requests
and generates the positions for each of the four sliders, while
maintaining collision safety, is called the Slider Manager.
It enables higher-level modules to “lock” a slider, and thus
control it for the duration of the locking period.

The Slider Manager then uses a combination of PID con-
trol for each slider, with a simulated spring system between
sliders, to update the position of all four sliders during each
update cycle (Figure 4). For each position request of a locked
slider at position x, we first calculate the required PID force
using the standard PID formula:

FPID = Kpe+Ki

∫ t

0

e dτ +Kd
de

dt
(t)

In addition to the PID force, the Slider Manager models
“virtual springs”, which help prevent collisions and move
unlocked sliders out of the way in a naturally-seeming
fashion. Based on the current position of the carriages, the
length of the virtual springs, and thus their current simulated
compression, we add the spring component kx to the force.
The force update for each carriage is then

FPID − kx

where the sign of kx is determined by the side of the
simulated spring.

F = kx

Carriage

Virtual
Spring

Actively controlled (locked
by higher-level module)

Free slider (unlocked)

F = FPID - kx

x! = x + F

Fig. 4. Interaction between PID control and simulated spring model

The result of this control approach is a system that is both
safe—carriages will never collide and push each other out
of the way—and expressive.

While it is expected that higher-level modules will not
cross over carriages, and be generally coordinated, adding
this middle-layer control system allows more freedom of
expressivity on a higher-level, for example inserting pre-
scripted animations, and parametric gestures, while keeping
the system safe at all times.

IV. GESTURES AND ANTICIPATION
A main contribution of this paper is modeling interactive

musical improvisation as gestures instead of as a sequence
of notes. Using gestures as the building blocks of musical
expression is particularly appropriate for robotic musician-
ship, as it puts the emphasis on physical movement and
not on symbolic note data. Gestures have been the focus of
much research in human musicianship, often distinguishing
between tone-generating and non-tone-generating gestures
[2]. A physical-gestural approach is also in line with our
embodied view of human-robot interaction [14].

Our definition of gesture deviates from the common use of
the word in human musicianship. In this paper, a “gesture”
is a physical behavior of the robot which may or may not
activate the instrument. A gesture could be a cyclical motion
of one arm, a simple “go-to and play” gesture for a single
note, or a rhythmic striking of a combination of mallets.
Since gestures are not determined by notes, but by the robot’s
physical structure, Shimon’s gestures separately control the
timing of the mallet strikers and the movement of the sliders.

A. Anticipatory Action

To allow for real-time synchronous non-scripted playing
with a human, we also take an anticipatory approach, divid-
ing each gesture into preparation and follow-through. This
principle is based on a long tradition of performance, such
as ensemble acting [15], and has been explored in our recent
work, both in the context of human-robot teamwork [16],
and for human-robot joint theater performance [11].

By separating the—potentially lengthy—preparatory
movement (in our case: the horizontal movement) from
the almost instant follow-through (in our case: the mallet
action), we can achieve a high level of synchronization and
beat keeping without relying on a complete-musical-bar
delay of the system.

584

V. IMPROVISATION

Implementing this gesture-based approach, we have de-
veloped a Jazz improvisation system, which we employed in
a human-robot joint performance. In our system, a perfor-
mance is made out of interaction modules each of which is
an independently controlled phase in the performance. It is
continuously updated until the part’s end condition is met.
This is usually a perceptual condition, but can also be a pre-
set amount of bars to play.

Beat Keeper

GesturesJoint
Performance

Module

Sensors

PerceptsPerceptsPercepts

GesturesGestures

Motor System

Fig. 5. Schematic interaction module for each phase of the performance

Figure 5 shows the general structure of an interaction
module. It contains a number of gestures which are either
triggered directly, or registered to play based on the current
beat, as managed by the beat keeper.

Gestures are selected and affected by information coming
in from percepts, which analyze input from the robot’s
sensory system. These percepts can include, for example, a
certain note density, or the triggering of a particular phrase
or rhythm.

A. Infrastructure

1) MIDI Listener: While there are a number of sensory
modules possible, we are currently using a MIDI sensory
input, responding to the notes from a MIDI-enabled electric
piano. On top of this sensor, we developed several perceptual
modules described later in this section.

2) Beat Keeper: Common to all parts, and continuously
running is the Beat Keeper module, which serves as an
adjustable metronome that can be dynamically set and reset
during play, and calls registered callback functions in the
parts and the gestures making up the performance.

To provide a simple example: a “one-three-random-note”
gesture could register to get called on every “one” and
“three” of a bar. In between calls it would “prepare” into
a certain random position, and then would activate the
appropriate striker on the callback-registered beats.

3) Chord Representation: We use three kinds of rep-
resentations for Jazz chords in our system. The simple
representation is that of a fixed set of notes in the robot’s
playing range. The second representation is octave-agnostic
and includes a set of notes and all their octave harmonics.
Finally, we also represent chords as a base note with a set of

set-octave or octave agnostic harmonics. We can parse these
from string representation in traditional Jazz notation (e.g.
“Cm7”, “BbM6”).

B. Module I: Call-and Response

The first interaction module is the phrase-call and chord-
response module. In this module, the system responds to a
musical phrase with a pre-set chord sequence, arranged in
a particular rhythmic pattern. The challenge here is not to
select the right notes, but to be able to respond in time and
play on a seamlessly synchronized beat and onset to that of
the human player, who can vary the tempo at will.

This module makes use of the anticipatory structure of
gestures. During the sequence detection phase, the robot
prepares the chord gesture. When the phrase is detected, the
robot can strike the response almost instantly, resulting in a
highly meshed musical interaction.

This module includes two kinds of gestures:
Simple chord gestures —

select an arm configuration based on a given chord
during the preparation stage, and strike the prepared
chord in the follow-through stage. If the chord is a
set chord, the configuration is set. If it is a flexible
chord, the gesture will pick different configurations
satisfying the chord at different times.

Rhythmic chord gestures —
are similar to the simple chord gestures in prepara-
tion, but during follow-through will strike the mal-
lets in a pre-set pattern. This can be an arpeggiated
sequence, or any other rhythmic structure.

The robot adapts to the call phrase using a simultaneous
sequence spotter and beat estimator percept. Using an on-
beat representation of the sequences that are to be detected,
we use a Levenshtein distance metric [17] with an allowed
distance d = 1 to consider a phrase detected1.

At that stage, the beat estimator will estimate both the
played beat based on the duration of the sequence, and
the beat synchronization based on the time of the last note
played. These are transmitted to the beat keeper, which will
execute a sequence of simple and rhythmic chords, as beat
callbacks. The result is an on-sync, beat-matched call-and-
response pattern, a common interaction in a Jazz ensemble.

C. Module II: Opportunistic Overlay Improvisation

A second type of interaction module is the opportunistic
overlay improvisation. This interaction is centered around the
choreographic aspect of movement with the notes appearing
as a side-effect of the performance. The intention of this
module is to play a relatively sparse improvisation that
is beat-matched, synchronized, and chord-adaptive to the
human’s playing.

The central gesture in this module is a rhythmic cyclical
movement gesture that takes its synchronization from the
currently active beat in the beat keeper module. This beat

1Naturally, we do not allow the last note in the phrase to be deleted for
the purposes of comparison, as this would invalidate the synchronization

585

is updated through a beat detection percept tracking the
beat of the bass line in the human playing, using a simple
bass-note temporal interval difference, modeled as either a
full, a half, or a quarter bar based on the previous beat. In
parallel, a chord classification percept is running, classifying
the currently played chord by the human player, by finding
a best fit from the chords that are part of the current piece.

Without interrupting the choreographic gesture, this inter-
action module attempts to opportunistically play notes that
belong to the currently detected chord, based on a preset
rhythmic pattern. If the rhythmic pattern is in a “beat” state,
and one or more of the mallets happen to be in a position to
play a note from the detected chord, those mallets strike.

Since both the choreographic gesture and the rhythmic
strike pattern are activated through a shared beat keeper, the
result is a confluence of two rhythms and one chord structure,
resulting in a novel improvisational gesture which is highly
choreographic, can only be conceived by a machine, and is
tightly synchronized to the human’s playing.

D. Module III: Rhythmic Phrase-Matching Improvisation

The third interaction module that we implemented is a
rhythmic phrase-matching improvisation module. As in the
previous section, this module supports improvisation that
is beat- and chord-synchronized to the human player. In
addition, it attempts to match the style and density of the
human player, and generate improvisational phrases inspired
by the human playing.

Beat tracking and chord classification is done in a similar
fashion as the in the opportunistic overlay improvisation: The
timing and pitch of the bass notes are used for detecting
the beat, for synchronizing the downbeats of the human’s
playing, as well as for chord classification.

In addition, this module uses a decaying-history probabil-
ity distribution to generate improvisational phrases that are
rhythm-similar to phrases played by the human. The main
gesture of this part selects—in each bar—one of the arm
positions that correspond to the currently classified chord.
This is the gesture’s anticipatory phase.

When in position, the gesture then plays a rhythmic phrase
tempo- and sync-matched to the human’s performance. Each
arm plays a different phrase. Arm i plays a phrase based on
a probabilistic striking pattern, which can be described as a
vector of probabilities

p⃗i = { pi0 pi1 · · · pik }

where k is the number of quantizations made. E.g.—on a
4/4 beat with 1/32 note quantization, k = 32. Thus, within
each bar, arm i will play at time j with a probability of pij .

This probability is calculated based on the decayed history
of the human player’s quantized playing patterns of the
human player. The system listens to the human player’s last
beat’s improvisation, quantizes the playing into k bins, and
then attempts to cluster the notes in the phrase into the
number of arms which the robot will use. This clustering
is done on a one-dimensional linear model, using only the
note pitch as the clustering variable.

Once the clusters have been assigned, we create a human
play vector

h⃗i = {hi
k} =

{
1 if a note in cluster i was played at time k
0 otherwise

The probability pij is then updated inductively as follows:

pij = hi
jλ+ pij(1− λ)

where λ is the decay parameter.
The result is an improvisation system which plays phrases

influenced by the human playing’s rhythm, phrases, and
density. For example, if the human plays a chord rhythm,
then the vectors h⃗i would be identical or near-identical for all
clusters, resulting in a robot improvisation that will be close
to a chord rhythm. However, there is variance in the robot’s
playing since it is using the human phrases as a probability
basis, therefore changing the pattern that the human plays.
Also, since the arm positions change according to the current
harmonic lead of the human, and the robot’s exploration of
the chord space, the phrases will never be a precise copy of
the human improvisation but only rhythmically inspired.

Moreover, as the probability vectors mix with data from
earlier history, the current playing of the robot is always a
combination of all the previous human plays. The precise
structure of the robot’s memory depends on the value of λ.

Another example would be the human playing a 1–3–5
arpeggio twice in one bar. This would be clustered into three
clusters, each of which would be assigned to one of the arms
of the robot, resulting in a similar arpeggio in the robot’s
improvisation.

An interesting variation on this system is to re-assign
clusters not according to their original note-pitch order. This
results in the maintenance of the rhythmic structure of the
phrase but not the melodic structure. In the performance
described below, we have actually used only two clusters
and assigned them to cross-over arms, i.e. cluster 0 to arms
0 and 2 and cluster 1 to arms 1 and 3.

Note that this approach maintains our focus on gestures
as opposed to note sequences, as the clustering records
the human’s rhythmic gestures, matching different spatial
activity regions to probabilities, which are in turn used by
the robot to generate its own improvisation. Importantly—
in both improvisation modules—the robot never maintains a
note-based representation of the keys it is about to play.

VI. LIVE PERFORMANCE

We have used the described robot and gesture-based im-
provisation system in a live performance before a public au-
dience. The show occurred on April 17 2009 in Atlanta, GA,
USA. The performance was part of an evening of computer
music and was sold-out to an audience of approximately 160
attendants.

The performance was structured around a “Jordu”, a Jazz
standard by Duke Jordan. The first part was an adaptive
and synchronized call-and-response, in which the pianist
would prompt the robot with a number of renditions of the
piece’s opening phrase. The robot detected the correct phrase

586

Fig. 6. A live performance of the robot Shimon using the gesture-based
improvisation system was held on April 17th 2009 in Atlanta, GA, USA.

and, using preparatory gesture responded on beat. A shorter
version of this interaction was repeated between each of the
subsequent performance segments.

The second phase used the introduction’s last detected
tempo to play a fixed-progression accompaniment to the
human’s improvisation. Then the robot started playing in
opportunistic overlay improvisation taking tempo and chord
cues from the human player while repeating an “opening-
and-closing” breathing-like gesture, over which the rhythmic
improvisation was structured.

The next segment employed rhytmic phrase-matching
improvisation, in which the robot adapted to the human’s
tempo, density, style, chord progression, and rhythmic
phrases. Our gesture-based approach enabled the robot to
adapt without noticeable delay while maintaining an overall
uninterrupted visual motion arc, and seem to be playing in
interactive synchrony with the human player.

An interesting result of this improvisation was a con-
stant back-and-forth inspiration between the human and the
robotic player. Since the robot’s phrases were similar, but
not identical to the human’s phrases, the human picked up
the variations, in return influencing the robot’s next iteration
of rhythms.

Finally, a pre-programmed crescendo finale led to the end-
chord, which was an anticipatory call-and-response, resulting
in a perceived synchronous end of the performance.

The overall performance lasted just under seven minutes.
Video recordings of the performance ([18], [19]; also at-
tached to this paper) were widely covered to acclaim by the
press and viewed by an additional audience of approximately
40,000 online viewers.

VII. CONCLUSION AND FUTURE WORK

We presented Shimon, an interactive improvisational
robotic marimba player developed for research in Robotic
Musicianship. We discussed the musically and visually ex-
pressive motor-control system, and a gesture-based impro-
visation system. The design of these systems stems from
our belief that musical performance is as much about visual
choreography and communication, as it is about tonal music
generation.

We have implemented our system on a full human-robot
Jazz performance, and performed live with a human pianist

in front of a public audience.
We are currently using Shimon to empirically study some

of our hypotheses brought forth in this paper. These in-
clude an evaluation of the gesture system vis-a-vis a note-
generation motor control; as well as the effects of robotic
presence on both band members and audience.

Additionally, we are developing a more predictive antic-
ipatory system to allow the robot to use past interactions
to generate preparatory gestures, based on our findings on
anticipatory human-robot interaction in [20], [16].

REFERENCES

[1] G. Weinberg and S. Driscoll, “Toward robotic musicianship,” Com-
puter Music Journal, vol. 30, no. 4, pp. 28–45, 2006.

[2] C. Cadoz and M. M. Wanderley, “Gesture - music,” in Trends in
Gestural Control of Music, M. M. Wanderley and M. Battier, Eds.
Paris, France: Ircam - Centre Pompidou, 2000, pp. 71–94.

[3] R. Rowe, Machine musicianship. Cambridge, MA: MIT Press, 2001.
[4] E. Singer, K. Larke, and D. Bianciardi, “Lemur guitarbot: Midi robotic

string instrument,” in NIME ’03: Proceedings of the 2003 conference
on New interfaces for musical expression. Singapore, Singapore:
National University of Singapore, 2003, pp. 188–191.

[5] R. B. Dannenberg, B. Brown, G. Zeglin, and R. Lupish, “Mcblare:
a robotic bagpipe player,” in NIME ’05: Proceedings of the 2005
conference on New interfaces for musical expression. Singapore,
Singapore: National University of Singapore, 2005, pp. 80–84.

[6] J. Solis, K. Taniguchi, T. Ninomiya, T. Yamamoto, and A. Takanishi,
“The waseda flutist robot no 4 refined IV: enhancing the sound
clarity and the articulation between notes by improving the design of
the lips and tonguing mechanisms.” in Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS
2007). IEEE, 2007, pp. 2041–2046.

[7] Toyota, “Trumpet robot,” ’http://www.toyota.co.jp/en/special/robot’,
2004.

[8] K. Petersen, J. Solis, and A. Takanishi, “Toward enabling a natural
interaction between human musicians and musical performance robots:
Implementation of a real-time gestural interface,” in Proceedings of the
17th IEEE International Symposium on Robot and Human Interactive
Communication (RO-MAN 2008), 2008.

[9] N. Baginsky, “The three sirens: a self-learning robotic rock band,”
http://www.the-three-sirens.info/, 2004.

[10] G. Weinberg and S. Driscoll, “The design of a perceptual and
improvisational robotic marimba player,” in Proceedings of the 18th
IEEE Symposium on Robot and Human Interactive Communication
(RO-MAN 2007), Jeju, Korea, August 2007, pp. 769–774.

[11] G. Hoffman, R. Kubat, and C. Breazeal, “A hybrid control system
for puppeterring a live robotic stage actor,” in Proceedings of the
17th IEEE International Symposium on Robot and Human Interactive
Communication (RO-MAN 2008), 2008.

[12] G. Hoffman and C. Breazeal, “Collaboration in human-robot teams,”
in Proc. of the AIAA 1st Intelligent Systems Technical Conference.
Chicago, IL, USA: AIAA, September 2004.

[13] J. Lasseter, “Principles of traditional animation applied to 3d computer
animation,” Computer Graphics, vol. 21, no. 4, pp. 35–44, July 1987.

[14] G. Hoffman and C. Breazeal, “Robotic partners’ bodies and minds:
An embodied approach to fluid human-robot collaboration,” in Fifth
International Workshop on Cognitive Robotics, AAAI’06, 2006.

[15] S. Meisner and D. Longwell, Sanford Meisner on Acting, 1st ed.
Vintage, August 1987.

[16] G. Hoffman and C. Breazeal, “Anticipatory perceptual simulation
for human-robot joint practice: Theory and application study,” in
Proceedings of the 23rd AAAI Confererence for Artificial Intelligence
(AAAI’08), July 2008.

[17] V. I. Levenshtein, “Binary codes capable of correcting deletions,
insertions and reversals,” Soviet Physics Doklady, vol. 10, p. 707, 1966.

[18] G. Hoffman, “Human-robot jazz improvisation (highlights),”
http://www.youtube.com/watch?v=jqcoDECGde8, April 2009.

[19] ——, “Human-robot jazz improvisation (full performance),”
http://www.youtube.com/watch?v=qy02lwvGv3U, April 2009.

[20] G. Hoffman and C. Breazeal, “Cost-based anticipatory action-selection
for human-robot fluency,” IEEE Transactions on Robotics and Automa-
tion, vol. 23, no. 5, pp. 952–961, October 2007.

587

