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Abstract—We evaluate the emotional expression capacity of
skin texture change, a new design modality for social robots. In
contrast to the majority of robots that use gestures and facial
movements to express internal states, we developed an emo-
tionally expressive robot that communicates using dynamically
changing skin textures. The robot’s shell is covered in actuated
goosebumps and spikes, with programmable frequency and
amplitude patterns. In a controlled study (n = 139) we presented
eight texture patterns to participants in three interaction modes:
online video viewing, in person observation, and touching the
texture. For most of the explored texture patterns, participants
consistently perceived them as expressing specific emotions, with
similar distributions across all three modes. This indicates that a
texture changing skin can be a useful new tool for robot designers.
Based on the specific texture-to-emotion mappings, we provide
actionable design implications, recommending using the shape of
a texture to communicate emotional valence, and the frequency
of texture movement to convey emotional arousal. Given that
participants were most sensitive to valence when touching the
texture, and were also most confident in their ratings using that
mode, we conclude that touch is a promising design channel for
human-robot communication.

Index Terms—Soft robotics; human-robot interaction; emotion
expression; empirical study; texture-change; nonverbal behavior

I. INTRODUCTION

In this paper, we explore the potential of a texture-changing
skin as a design modality for robotic emotion expression. In
an experimental study we find consistency in how people map
skin texture movements to emotions, suggesting that texture-
changing skins can be a useful component in the design of
social robots.

Internal and emotional state expression is at the core of
Human-Robot Interaction (HRI) [1]-[3], and many social
robots are designed to convey their states not only with speech
but also through nonverbal signals. To date, the vast majority
of nonverbal expression in robots is in the form of facial
expressions [4]-[6] and body movements [7], [8], including
gaze behavior [9]. However, some robots may not necessarily
be designed with anthropomorphic features and configurations
that allow for such expressive behaviors [10]-[12].

To enable emotion expressions for robots in a manner
applicable to different robot configurations, we developed an
expressive channel for social robots in the form of texture
changes on a soft skin. Our approach is inspired by some
biological systems, which alter skin textures to express emo-
tional states. This behavior includes human goosebumps, a
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Fig. 1. A social robot prototype combining facial expressions and a texture-
changing skin. During the interaction, the user makes eye contact with the
screen face and puts their palms on the sides of the robot to touch the actuated
textures.

cat’s back fur raise, a blowfish displaying its spikes, or birds
ruffling their feathers [13]. While prevalent in animals, this
intuitive and widespread behaviour has not thus far been used
to communicate expressions for social robots. Adding such
expressive textures to social robots can enrich the design space
of a robot’s expressive spectrum: it can interact both visually
and haptically, and even communicate silently, for example in
situations in which they cannot be seen or heard but touched,
such as in military or low-visibility scenarios.

The soft robotic skin generates pneumatically actuated dy-
namic textures, deforming in response to changes in pressure
inside fluidic chambers [14]. In the social robot depicted in
Fig. 1, we integrated skins with two textured shapes inspired
by nature: goosebumps and spikes. We can then use the shape
and volume of the texture, as well as the speed of the texture’s
movement, to convey a variety of emotional expressions.

Given the novelty of this expressive modality, there are no
design guidelines or empirical evidence as to how texture
changes map to emotions. To investigate this question, we
conducted a controlled study to map emotions to texture
gestures, and to assess their expressive capabilities. We de-
veloped eight texture gestures using binary values for three
parameters: shape, frequency, and amplitude. We then asked
study participants to label these gestures with emotion words.
Participants did so in three interaction modes: watching online
videos of the texture, observing the texture in person, and
touching it.

The study results indicate that a robot’s skin texture change



can be a promising channel for communicating specific emo-
tions across different interaction modes. The results also
provide insights on how to design texture behaviors to commu-
nicate a specific emotion. The choice of texture units and the
movement frequency are the two most significant parameters
defining the textures’ expressive content, with goosebumps
conveying a more positive emotion than spikes, and a higher
frequencies communicating a more aroused state. Moreover,
we found a variance in valence perception between interaction
modes, suggesting that touching the robot’s texture change is
the most promising channel to evoke emotional valence.

II. RELATED WORK
A. Nonverbal Expression in Social Robots

Generating nonverbal behaviors is a central ability for
social robots to facilitate communication with humans. To
achieve this, the majority of social robots use gestures and
facial expressions, e.g., KOBIAN [15], Probo [16], NAO [17],
Kismet [18], EMYS [19], and Nexi [20]. On the other hand,
the modality of touch that communicates or evokes emotions
has received less attention. Yet the sense of touch is impor-
tant for humans in communicating emotions and for social
bonding [21]-[23]. As a result, there are a number of social
robots that use affective haptic interfaces for users. These
robots include PARO [24], a seal-like robot which has touch
sensors embedded under its skin and engages people through
sound and movement; the Haptic Creature [25], an animal-
like robot that displays its emotions by altering breathing
rates and adjusting body stiffness; and Cuddlebits [26], a
robot that also displays its emotions through breathing-like
behaviors. In all of these cases, the robots express their
states either through whole body movements or vibrotactile
sensations. None of these robots change their skin textures as
an expressive channel.

Outside of the robotics field, designers have explored
affective haptics through “shape-changing interfaces” [27].
Recently, Van Oosterhout et al studied the effect of shape-
change on emotional experience when interacting with an
intelligent thermostat [28]. Davis designed an architectural
shape changing textile wall panel for emotional expression
and nonverbal communication through vision and touch [29].

B. Soft Materials and Mechanisms in Social Robotics

Recently, soft materials and soft mechanisms have been
explored in social robot design. The vast majority of such
robots conform to a similar design that includes a soft exterior
over a rigid or tensile inner mechanism. Examples include
Keepon [30], a rigid linkage mechanism covered by a soft
snowman-like exterior; Tofu [31], a winch mechanism embed-
ded in a foam structure; and Blossom [32], a compliant tensile
mechanism covered with handcrafted exteriors. Although some
of these robots deform their soft exteriors for expression, they
focus on their full body deformation on a macro scale. Change
of skin on a micro scale still remains an unexplored channel
for socially interactive robots.

Fig. 2. A goosebump TU transforms from a flat initial surface to a smooth
bump under positive pressure. The volume of the bump increases with the
increase of internal pressure.

Fig. 3. Spike TU inflation from negative pressure, with the haptic tip hidden
inside the elastomer, to positive pressure, with the sharp thorn protruding.

C. Russell’s Circumplex Emotion Model

In social and cognitive psychology, a common model
for emotional states is Russell’s circumplex model of emo-
tions [33]. From Russell’s theory, an emotion is com-
posed of two orthogonal dimensions (originally three). One
dimension—valence—is scaled from unpleasant (negative)
to pleasant (positive), while the other dimension—arousal—
ranges from deactivated (low) to activated (high). We use this
decomposition in our analysis below.

III. DESIGN OF ROBOTIC SKIN AND EXPRESSIONS

To implement skin texture changes for social robots, we
developed a design using layers of cast elastomer and inexten-
sible films. This design allows us to map pressure to surface
deformation of the skin in the form of specifically shaped
texture units (TUs). These units can optionally also have rigid
components embedded in them for haptic expression. Below
the layers of TUs is a network of interleaved fluidic channels
connecting the units of the same type for separate control.

We used this design to develop two forms of expres-
sive textures inspired by nature: goosebumps and spikes. A
goosebump unit transforms from a flat surface to a smooth
bump under pressure, as presented in Fig. 2. A spike unit is
structured as a cone with a rigid element embedded on the tip
for providing distinct visual and haptic feedback. The spike
deforms and retracts the sharp tip under negative pressure
(Fig. 3). Fig. 4 shows a skin design with interleaved 2D arrays
of goosebumps and spikes under different pressure levels.

Noise is an important consideration for designing the actu-
ation systems for texture units. To address possible distraction
due to noise, we designed a power screw actuated linear
displacement pump. The core of this design is a re-purposed
syringe, which we used as a cylindrical pump with a plunger
displaced by a linear stepper motor. This system afforded low
noise, high control accuracy and efficiency when compared
to the commonly used rotary displacement pump. A full
description of the mechanism design is found in [14].



Goosebumps

Fig. 4. Deformation of texture module in response to the inner chamber
pressure. From left to right, the pressure of the spikes channel changes from
negative to positive. From bottom to top, the goosebumps channel inflates
from negative pressure to positive pressure.

Amplitude

Goosebumps

Fig. 5. The eight expressions used in this study vary in a binary fashion
along three texture parameters as independent control variables: texture shape,
change frequency (not shown) and amplitude.

A. Design of Expressive Behaviors

We created eight expressions, each by selecting from binary
values of the three texture parameters (Fig. 5).

1) Texture Unit Type: We varied the two Texture Unit (TU)
types described in III: goosebumps and spikes. We hypoth-
esized there would be a mapping between emotion valence
and the shape of textures, with negative valence mapping
to the spikes TU, and positive to the goosebumps TU. This
is inspired by natural responses, where spikes represent an
angry, defensive state, and goosebumps are related to pleasure
and excitement. Moreover, the spikes with sharp, rigid tips
deliver an unpleasant haptic experience when compared to the
sensation of smooth soft bumps.

2) Texture Change Frequency: Texture change frequency
is defined as the number of texture rises per unit time. The
texture change frequency is determined by the inflating and
deflating speed of the linear displacement pump. Constrained
by the maximum linear speed of power screw (100mm/s),

available texture change frequencies range from 0 to 60 rises
per minute (rpm).

We hypothesized that the frequency of the texture gestures
would affect the arousal dimension of emotional states, with
higher texture change frequency mapped to a higher arousal
level. This is inspired by analogies in human experiences,
where humans’ physiological frequency”, such as breath and
heartbeats falls to a lower rate when in a low arousal state, and
increase when being aroused. Through piloting we converged
on 20 rpm and 60 rpm as binary frequency values for the
expressions used in the experiment.

3) Texture Change Amplitude: Research in human phys-
iology shows that the increased arousal not only results in
an increased breathing rate, but also in a larger ventilation
volume [34]. Moreover, there exist some natural analogies
of various forms of amplitudes, for example, the loudness of
voice, and the amplitude of sea waves. In these cases, the lower
amplitudes are usually associated with calm and peaceful
states. Inspired by these phenomena, we hypothesized that the
amplitude of texture change could be used to convey various
arousal levels of emotions, with higher amplitude representing
a higher arousal level.

In our system, the amplitude of texture movement is de-
termined by the inflating and deflating volume of the pump.
Amplitude values range from 0-30ml for spikes channel and
0-40ml for goosebumps. Designing the candidate expressions,
we decided to use 15ml and 30ml as two values of amplitudes
for spikes channel and 20ml and 40ml for the goosebumps.
Note that the amplitude values chosen deliver a qualitatively
different texture experience, especially for spike TUs. In low-
amplitude spikes the rigid tip detracts fully into the skin,
whereas in high-amplitude spikes the rigid tip stays above
the surface. This is related to the dynamics of the inflation
response to the pressure changes in each TU type.

IV. RESEARCH QUESTIONS AND HYPOTHESIS

In this study, we evaluate the following research questions
and hypotheses. First, we wanted to know whether and to what
extent robot texture change can be perceived as conveying
specific emotions. We had the following hypotheses:

o HI1: Texture change can be consistently perceived as a
certain emotion across different interaction modes.

o H2: Consistency of people’s perceptions of emotions
differs across interaction modes.

Second, we wanted to explore how the three parameters of
the texture change correlate with dimensions of valence and
arousal. We had the following hypotheses:

o H3: Goosebumps textures will be perceived as conveying
more positive valence than spikes.

o H4: High frequency gestures will be perceived as con-
veying higher arousal states than low frequency ones.

o HS: High amplitude gestures will be perceived as con-
veying higher arousal states than low amplitude ones.



Please look at the video below, and choose the one (1) or two (2) emotions that most
accurately describe the movement of the textured skin.

‘You may play the video as many times as you like.

B YouTube

Excited Calm Angry

Happy Sleepy Sad

GContent Scared Bored

Fig. 6. Screen shot from the online study. Participants watched a video of
a texture gesture, then labeled this behavior with emotion words out of a
provided list. After this choice, they evaluated their confidence of that choice
on a five-point scale from “Very not confident” to “Very confident”.

V. METHOD

Participants experienced the eight different texture gestures
under three interaction modes: online video viewing, observing
the texture in person, and touching the texture. In all interac-
tion modes, the textures were presented on a 125mm x 125mm
Texture Module, as depicted in Fig. 5. In each experiment,
we asked participants to label gestures with emotion words
representing nine key emotions from Russells circumplex
model [33], [35]: angry, bored, calm, content, excited, happy,
sad, scared, and sleepy. These emotions were chosen to form
a set that covers all four quadrants of the emotion.

A. Participants

We recruited 140 participants for this study, 100 for the
online video study and 40 participants for a laboratory experi-
ment, which included both in-person observation and touch in-
teraction. Participants were recruited via an internal university
participant system and compensated with participation credits.
One sample from the online video study was dropped due to
missing response data, leaving us with 99 video participants,
and 139 overall participants.

B. Procedure

1) Online Video Study: We recorded eight videos, one for
each texture expression. Videos showed the Texture Module
from a side angle and from a three-quarter top-down angle.
Each video clip lasted 10 seconds. Participants were shown
the videos in randomized order. Below each video, they were
asked to choose one or two emotions that most accurately de-
scribed the movement of the skin and evaluate their confidence
on a 5-point scale. Participants could play the videos as often

as they wanted. Fig. 6 shows a screen shot of one page in the
online study.

2) Laboratory Experiment: Participants sat in a chair facing
a laptop with the Texture Module placed to the right of the
laptop. A research assistant sat nearby to activate the robot’s
textures. They were told to imagine the textured surface as the
skin of a creature, and that they would see some changing of
textures in the skin during the experiment. They were asked to
guess the emotional states of the creature based on the changes
in its skin.

The experiment was divided into two sessions: in one,
participants were asked to observe the texture expressions
without touching it; in the other, they placed one palm on the
textured area and experienced its motion only though touch.
To avoid sequence effects, the order of two sessions was
counterbalanced. Within each session, the order of gestures
was randomized across participants. Each gesture lasted for 10
seconds, followed by a pause to let participants select one or
two emotion labels, and report their confidence. The questions
and responses format were presented on the laptop and were
in the same format as in the online study, only without the
video element. The textures’ motion could be replayed as
often as the participants liked by asking the research assistant
to replay a texture. After completing the survey, participants
would indicate to the research assistant to activate the next
gesture. Before each session started, participants were given a
practice session, where they observed or touched two examples
of texture movements to make sure they fully understood the
procedure. We used low-amplitude, low-frequency spikes and
high-amplitude high-frequency goosebumps as two examples
to illustrate the range of gestures. Participants wore noise-
cancelling headphones playing pink noise during the experi-
ment to mask mechanical noises.

VI. FINDINGS

We quantitatively and qualitatively analyze the mapping
between texture gestures, texture parameters, emotions, and
emotion dimensions to address our research questions and
hypothesis. Given the novelty of texture changes as an ex-
pressive modality, the analysis is exploratory, viewing the data
from a number of lenses to gain better design insights for this
technology in social robotics.

In the rest of the paper, texture gestures are denoted by
three-letter codes, with the first letter representing the Texture
Unit type (G or S for Goosebumps or Spikes), the second
letter representing the frequency (H or L for high or low), and
the third representing the amplitude (H or L for high or low).
For example, SHL is a spikes texture with high-frequency and
low-amplitude.

A. Mapping Texture Gestures to Emotions

To assess H1, we first analyze the emotion distribution for
each gesture using Pearson’s Chi-square test. Table. I lists the
results for each of the three interaction modes. All of the
gestures were significantly non-uniform, except for GHL in
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video mode (p = 0.031)!. This finding broadly supports H1,
namely that emotions attributed to each of the eight gestures
tend to cluster. Low-frequency, low-amplitude spikes (SLL)
was the most uniform, i.e., the least informative, gesture.

Comparing modes, we note that for all gestures except
SLL, the video distribution was more uniform than either of
the two in-person modes. This indicates that viewing video
textures is less informative than experiencing them in
person. Between the two in-person modes, low-amplitude
gestures (*eL) were more informative in observation, whereas
high-amplitude gestures (**H) were more informative in the
touch mode. This suggests that the use of subtle amplitude
differences are more noticeable visually than haptically.

Fig. 7 illustrates these insights via the mapping between
texture gestures and emotions. For example, the GHL column
in the video mode, which was not significant based on its
Chi-square result, is quite uniformly distributed and thus not
informative, whereas in both in-person modes, GHL was
mostly seen as being either “happy” or “excited”.

Visually inspecting Fig. 7 we can see several trends.
Both GLe (low-frequency goosebumps, columns 3—4) and
SHe (high frequency spikes, columns 5-6) gestures seem to

Following Benjamin et al. [36], we consider p < 0.005 to be statistically
significant, rather than the more common p < 0.05.

TABLE 1
CHI-SQUARE AND P VALUES OF EMOTION SELECTION DISTRIBUTIONS BY
GESTURE AND INTERACTION MODE.

Ges Video Observe Touch
' Chi-Sq 14 Chi-Sq p Chi-Sq p

GHH 6781 <0.001 69.68 <0.001 117.5 <0.001
GHL 16.96 0.031 110.64  <0.001 65.27 <0.001
GLH 122.7 <0.001 127.3 <0.001 140.38 <0.001
GLL 99.18 <0.001 18373 <0.001 162.3 <0.001
SHH 93.5 <0.001 13295 <0.001 21858 <0.001
SHL 177.61  <0.001 174.33 <0.001 92.55 <0.001
SLH 46.56 <0.001 55.18 <0.001 210.12 <0.001
SLL 31.72 <0.001 23.92 0.002 43.8 <0.001

evoke agreement between in three modes. As a general trend,
emotion mappings seem to determined mostly by the first
two parameters: Texture Unit and frequency.

B. Multiple Correspondence Analysis

To provide an additional view on the data in Fig. 7,
we conduct a multiple correspondence analysis (MCA) for
each mode (Fig. 8). This method is similar to Principle
Component Analysis (PCA), but focuses on the co-occurrence
between two categorical variables. The two most significant
dimensions account for a cumulative inertia of 92.5%, 85.4%
and 90.2% for video, observe, and touch respectively. It is
interesting to note that while we have not yet introduced
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the circumplex model, the factored MCA dimensions broadly
map onto the commonly used arousal (Dimension 1) and
valence (Dimension 2) dimensions. The “valence” dimension
(Dimension 2) accounts for the least inertia for video, and
the most for touching the texture, suggesting that valence is
most communicative through touch, and least through video
observation.

Some clear relationships emerge from the MCA analysis,
which reflect the insights above. In all interaction modes,
GLe gestures are strongly associated with sleepy and calm;
SHe gestures are associated with angry and scared. In person,
GHe are associated with happy and excited, whereas in video,
GHH is only associated with happy, and GHL is associated
with content. Sad is only associated with gestures in the visual
modes (SLH in video, and SLL in person), but not in the touch
mode .

C. Mapping Gestures to Valence / Arousal

To further assess the relation between the gestures and the
classic valence and arousal decomposition, we mapped the
nine emotion labels used in this experiment to the Circumplex
Model [33], [35]. There has been much debate about the
mapping between emotion labels and these two dimensions,
and there is no generally accepted mapping, as it seems to vary
between cultures, ages, and other factors. In this exploratory
work, we visually map each word to the plane using a 7-point
arousal and valence scale ranging from —3 to 43, based on
the original model published by Russell et al..

Fig. 9 plots the joint probability distributions, pooled for all
modes, using a Kernel Density Estimate (KDE) method, with
marginal distributions along two axes showing the arousal and
valence estimations of the expressed emotion. These, again,

show that GLe gestures and SHe gestures are the most
informative. GLe gestures are generally associated with
low-arousal emotions and SHe gestures with high arousal
emotions. We can also note that GHH relates to high-valence
emotions. SLe and GHL gestures are not as informative,
but the former tend to low-valence, high arousal (scared and
angry), and the latter to positive valence emotions.

D. Texture Parameters and Valence / Arousal

Our exploratory analysis above suggests that the first two
parameters (TU and frequency) most reliably relate to emotion
expressions. To further dissect this relationship, we analyzed
each of the three parameters (Texture Unit, frequency, and
amplitude) separately vis-a-vis emotion ratings. Fig. 10 shows
the percentage for each emotion by texture parameters.

We can visually note again that TU type and frequency
are less uniformly distributed and carry the most emotional
information. Video, overall, is less discriminative, and the
amplitude parameter is the least informative.

To more specifically address H3-5, we analyze the rela-
tionship between texture parameter and emotion dimension.
Fig. 11 show this 2 x 3 relationship split by mode. We
use fixed-effects regressions to evaluate these relationships
statistically:

1) Texture Types and Valence (H3): A fixed-effects re-
gression for valence with Texture Unit type as a predictor,
controlled for participant ID shows that TU type strongly
predicts valence rating (F'(1,2029) = 167.84,p < 0.0001).
Goosebumps communicate high valence and spikes low va-
lence. This supports H3, namely that TU type relates to
emotional valence. Fig. 11 also indicates that that gestures
with goosebumps TU were associated with lower arousal than
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that those with spikes TU, although this was not one of our
original hypotheses.

2) Frequency and Arousal (H4): We ran a fixed-effects
regression for arousal with frequency as a predictor, controlled
for participant ID. Frequency strongly predicts the arousal
rating (F'(1,2029) = 691.83,p < 0.0001). This supports H4,
namely that frequency relates to emotional arousal.

3) Amplitude and Arousal (H5): We ran a fixed-effects
regression for arousal with amplitude as a predictor, controlled
for participant ID. Amplitude does not significantly predict the
arousal rating (F'(1,2029) = 4.63,p = 0.036). HS is thus not
supported. Amplitude does not reliably map onto arousal.

E. Confidence Between Interaction Modes

Finally, we turn to H2. We already found some support in
the lower Chi-square values for the video mode, indicating that
watching the texture on video was somewhat less informative
than viewing them in person or touching the gestures.

To further evaluate the interaction modes we compare self-
reported confidence ratings across modes. A fixed-effect re-
gression with mode, gesture, and the interaction between mode
and gesture as predictors, controlled for participant shows that
gesture (F'(7,2007) = 17.92), mode (F'(2,2007) = 10.56),
and the interaction between gesture and mode (F'(14,2007) =
6.58) significantly predict the confidence level, all at a p <
0.0001 level. The mean confidence values of each mode are
shown in Fig. 12. This also supports H2.

VII. DESIGN IMPLICATIONS

The results of our study suggest that the proposed new
modality of texture changes is capable of conveying specific
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Fig. 12. Mean confidence rating by mode. Error bars show standard errors.

emotional states. For most of the explored texture gestures,
participants consistently rated these as expressing the same
emotions, making texture a promising choice for a commu-
nicative channel in the design of future social robots.

The results indicate that interaction modes have less of an
effect on humans’ emotional perceptions than we anticipated.
That said, the perceived intensity of emotions and people’s
confidence in their perception are affected by how they expe-
rience the texture gestures. Video emotion attribution is less
consistent than live modes. Participants were least confident in
the video mode, more so in person observation, and most when
touching the robot. This finding conforms with the increasing
insights in HRI research, that physically present robots have
more impact on users and are more informative in contexts
than robots depicted in videos [37], [38].

From the results of the MCA analysis, we find that the
video mode has the least proportion of inertia for the “va-
lence” dimension, indicating that valence is less likely to be
communicated well by a robot that is not physically presented.
Some of this effect may be owing to users’ physical and
psychological “distance” from the robot over video. This is
supported by research in Psychology, that the distance from



an object has effects on people’s “degree of concern”, and thus
affects the “representational elements’ valence” [39], [40].

Valence perception is most strongly discriminated in the
touch mode. So, even though we have shown texture changes
to effectively communicate both visually and haptically, when
a robot designer wants to evoke valence, touching the robot’s
texture change is the most promising channel. This finding
can also shed additional light on using textures skin in robot
design. For example, a robot may need to adjust its expres-
sions and emotional expectations by considering the factor of
whether it is physically presented, and possibly the viewing
distance and the degree of psychological engagement.

In addition to psychological distance, this finding could
also be due to the emotional impact brought about by tactile
sensations. In our case, spikes are more likely to be interpreted
as a negative emotion when sensing a sharp, unfavorable
sensation under one’s palm. The effectiveness in conveying
valence by touching a changing texture skin stands out from
most current social robotics research dealing with haptic
interactions, when using breathing-like behaviors or through
vibrotactile sensations: Most of them were proven to have
ambiguity in communicating valence [25], [26]. The tangibility
and materiality of TUs, on the contrary, give users direct tactile
impressions and can be effective and intuitive in conveying
emotional valence.

Of the parameters we chose to vary in our design, the type
of TU and its movement frequency had the most significant
impact on emotion recognition. We recommend using those
parameters in the future design of texture skins for robots.
Amplitude was not a good communicative parameter, with
the exception that small amplitude changes were readable
via in-person observation. The two strongest parameters also
map nicely onto the commonly accepted Circumplex Model
of emotion plane. As shown through a number of related
analyses, the shape of a texture maps roughly to emotional
valence, and texture change frequency maps to arousal.

We find that most emotions we tested could be expressed by
a specific set of gestures, however, the expressive significance
varied across emotions. Emotions with “extreme” (high or
low) arousal are more strongly categorized than emotions
with medium arousal. This indicates an arousal gap in the
expressive content. One possible cause is that in our case,
the arousal axis is mainly expressed by frequency parameters,
and we only chose two extreme levels. Designers may be able
to increase the expressive consistency and enrich the context
range by continuously varying the frequency.

Based on our analysis from the findings, we can suggest
the mapping between texture gestures and emotion expressions
laid out in Table II.

We include the weak mapping between SLe and the sad and
bored emotions, but stress that we did not identify any gesture
that was selected consistently as sad or bored. Also, Table II
shows that several similar emotions are hard to differentiate,
e.g., calm and sleepy. We believe that by adding more degrees
of freedom of texture parameters, and optional values that
they can take, a designer could increase the robot’s expressive

TABLE II
SALIENT MAPPING BETWEEN TEXTURE GESTURES AND EMOTIONS.

Texture Gesture Emotions Notes
Low-frequency Goosebumps (GLe) —  sleepy / calm

High-frequency Spikes (SHe) —  angry / scared
High-frequency Goosebumps (GH®) —  happy / excited  In person
High-frequency Goosebumps (GHe) —  happy / content ~ Over video
Low-frequency Spikes (SLe) —  sad / bored Weak

range. Some other parameters we would like to study in the
future include the size of texture units, non-periodic texture
movements, and asymmetric texture change patterns.

There are some limitations on the generality of the results.
In the experiment, we surveyed two texture forms: goose-
bumps and spikes. We do not have empirical data on texture
forms beyond these two. Furthermore, emotion perceptions
may be affected by form factors of the robot [41]. In this
paper, we used a disembodied flat textured skin module. It
stands to reason that, when the texture is attached to a robot
with a different form factor or when it is combined with other
communicative channels such as facial expressions and gaze,
the findings may not apply. The interaction between texture
expressions and other modalities needs to be further studied.

VIII. CONCLUSION

In this paper, we empirically explored the expressive poten-
tial of a new design channel for social robots in the form of
skin texture change. We conducted a study with 139 partici-
pants labeling eight texture movements with validated emotion
words in three interaction modes: watching in video, observing
and touching live texture movements. Our results showed
that most texture expressions could be perceived as specific
emotions, and perceptions were similar across different in-
teraction modes. We also found a strong correlation between
texture patterns and Russell’s emotional decomposition, with
the goosebumps texture perceived as more positive valence
than spikes, and high texture change frequency mapped to a
higher arousal emotion, leading to clear design implications
for the use of texture as expressive modality. Overall our
findings identify skin texture change as a promising design
tool in social robots design.

Future work will compare the effectiveness of texture ex-
pression to other modalities such as facial expressions. We
plan to explore more TU shapes and texture change parameters
to increase the expressive range of this modality. We further
would like to study the expressive capability of texture change
in specific applications, such as in autonomous cars, and for
developing a communicative channel for robots for visually-
impaired people.
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