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ROBOT CAPABILITIES ARE maturing across domains, 
from self-driving cars to bipeds to drones. As a result, 
robots will soon no longer be confined to safety-
controlled industrial settings; instead, they will directly 
interact with the general public. The growing field of 
human-robot interaction (HRI) studies various aspects 
of this scenario, from social norms to collaborative 
manipulation to human-robot teaming, and more.

Researchers in HRI have made great strides  
in developing models, methods, and algorithms  
for robots acting with and around humans,29 

but these “computational HRI” models 
and algorithms do not generally come 
with formal guarantees and constraints 
on their operation. To enable human-
interactive robots to move from the lab 
to real-world deployments, we must 
address this gap.

Demonstrating trustworthiness in 
various forms of automation through 
formal guarantees has been the focus 
of validation, verification, and synthe-
sis efforts for years. For instance, air-
craft control systems must meet guar-
antees—such as correctly handling 
transitions between discrete modes 
of operation (take-off, cruise, land-
ing)—while simultaneously providing 
a guarantee on safety (for example, 
not being in both take-off and land-
ing modes at the same time) and live-
ness, the ability to eventually achieve a 
desirable state (for instance, reaching 
cruise altitude).

Formal methods, such as model 
checking and theorem proving, play a 
central role in helping us understand 
when we can rely on automation to do 
what we have asked of it. Formal meth-
ods can be used to create correct-by-
construction systems, provide proofs 
that properties hold, or find counter-
examples that show when automation 
might fail.

Formalizing HRI can enable the 
creation of trustworthy systems and, 
just as importantly, support explicit 
reasoning about the context of guar-
antees. First, writing formal models 
of aspects of HRI would enable verifi-
cation, validation, and synthesis, thus 
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 ˽ Our analysis of different HRI domains 
highlights the importance of 
understanding human behavior for 
successful HRI.

 ˽ HRI brings unique challenges and 
opportunities for formal methods, from 
defining specifications to dealing with 
adaptation and variability in humans.
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providing some guarantees on the 
interaction. Second, it is unrealistic 
to verify a complete human-robot sys-
tem due to the inherent uncertainty 
in physical systems, the unique char-
acteristics and behaviors of people, 
and the interaction between systems 
and people. Thus, a formal model 
requires us to articulate explicit as-
sumptions regarding the system, in-
cluding the human, the robot, and the 

environments in which they are oper-
ating. Doing so exposes the limits of 
the provided guarantees and helps in 
designing systems that degrade grace-
fully when assumptions are violated.

In this article, we discuss approaches 
for creating trustworthy systems and 
identify their potential uses in a va-
riety of HRI domains. We conclude 
with a set of research challenges for 
the community.

Techniques for Demonstrably 
Trustworthy Systems
We divide the techniques for gaining 
confidence in the correctness of a sys-
tem into four approaches: synthesis of 
correct-by-construction systems, for-
mal verification at design time, run-
time verification or monitoring, and 
test-based methods. Common to all 
of these approaches is the need to ar-
ticulate specifications—descriptions of 
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created manually or automatically 
through synthesis.20 This type of veri-
fication is, in a sense, the most light-
weight way to integrate formal meth-
ods into a design. It does not alter 
the design; it enables the detection of 
failures or deviations from expected/
formalized behavior, allowing the ro-
bot to be shut down or switched into 
a safe mode. An additional benefit of 
runtime-checkable specifications is 
that they allow us to “probe” the sys-
tem at design time using methods 
such as statistical model checking.15

Test-based methods complement 
formal methods during verification 
and validation. In particular, simu-
lation-based testing2 can expose the 
system under test to more realistic 
stimuli than the often highly abstract 
scenarios that can be verified formal-
ly. From a performance point of view, 
simulation-based testing can reach 
verification goals faster and with 
less effort than conventional testing 
in the real world. Coverage is a mea-
surement of verification progress, al-
lowing engineers to track the variety 
of tests used and determine their ef-
fectiveness in achieving verification 
goals. Assertion monitors act as test 
oracles, much like the monitors used 
for runtime verification. Model-based 
testing is a specific technique that 
asserts the conformance of a system 
under test to a given formal model 
of that system.30 This is particularly 
important when guarantees or code 
generation rely on the correctness of 
a model.

Validation, verification, and syn-
thesis techniques are always related 
to given specifications. These specifi-
cations can never cover the full behav-
ior of a physical system in the world; 
rather, they include assumptions and 
abstractions to make the problem 
tractable. Therefore, guarantees are 
provided with respect to the specifica-
tion, enabling us to gain confidence 
in the system’s overall correctness, 
narrow down the sources of problems, 
and understand the constraints that 
limit deployment.

HRI Domains and  
Their Unique Challenges
Many HRI domains could benefit from 
formal methods, and each domain 
brings about unique challenges:

what the system should and should 
not do. Specifications typically in-
clude both safety and liveness prop-
erties and are defined in a formal 
language, for example temporal log-
ics over discrete and/or continuous 
states, or satisfiability modulo the-
ory (SMT) formulas (for example in 
Clarke et al.8).

The four approaches outlined be-
low are listed in decreasing order of 
exhaustiveness and, as a result, com-
putational complexity. Less exhaustive 
approaches can typically handle more 
complex systems at a greater level of 
realism. Synthesis is the most compu-
tationally expensive approach and re-
quires the coarsest abstraction, but it 
can automatically create a system with 
guarantees. Test-based methods, how-
ever, can handle the most complex sys-
tems but do not provide formal guar-
antees regarding the satisfaction of 
the specifications. In practice, a com-
bination of techniques is required, as 
no single technique can be relied upon 
on its own.31

Synthesis is the process of auto-
matically generating a system from 
the specifications. In the context of ro-
botics, there are different techniques 
for doing so,14 including offline gen-
eration of state machines or policies 
satisfying discrete and probabilistic 
temporal logic specifications, online 
receding horizon optimization for 
continuous temporal logics, and on-
line optimization with SMT solvers.

Formal verification techniques 
span methods that exhaustively ex-
plore the system (model checking, 
reachability analysis8) to those that 
reason about the system using axioms 
and proof systems (theorem proving10). 
Tech niques vary from deterministic, 
worst-case analysis to probabilistic 
reasoning and guarantees, and from 
discrete spaces to continuous ones. 
Such methods are typically applied 
at design time and either determine 
that the specification is met in every 
possible system behavior or provide a 
counterexample—a system execution 
that violates the specification—which 
may then be used to further refine the 
design or the specification.

Runtime monitoring is the process 
of continuously checking system ac-
curacy during execution using moni-
tors that check specifications, either 

When  
the interaction 
involves shared 
human-robot 
control, equally 
important to  
the idea of humans 
trusting the robot  
is the notion  
of whether and  
to what extent  
the robot can trust 
the human.
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drivers of other vehicles around the au-
tonomous car, and pedestrians or bi-
cyclists interacting with autonomous 
vehicles on roads.

An obvious specification in this 
domain is safety—no collisions. How-
ever, that specification is not enough. 
When merging onto a highway, the 
safest course of action is to wait until 
no other vehicles are nearby. On busy 
roads this is not a reasonable course 
of action. Therefore, the specification 
needs to go beyond addressing the 
challenges of driving a single vehicle 
by formalizing desirable behavior 
when cars interact with other vehicles 
and road users.28 The challenges of this 
domain are to model and validate ac-
ceptable road behavior; reason about 
the expected and unexpected behavior 
of people in the above categories; and 
provide certification, diagnosis, and re-
pair techniques that will enable auton-
omous vehicles to drive on our roads.

Social Collaboration: In addition 
to the contexts listed above, there are 
many instances in which humans and 
robots will engage in predominantly 
social, rather than physical, interac-
tions.5 For example, information-ki-
osk robots at an airport might engage 

Physical HRI involves systems in 
which the physical states of an automa-
tion interact with the physical states 
of a human;4 for example, a robotic 
wheelchair carrying a person or a con-
struction-assistant robot and a person 
carrying a heavy load together. In addi-
tion to physical states interacting, their 
internal states interact, since both the 
robot and human often have a model of 
the task they are working on to achieve 
as well as a model of each other.

For example, in a setting where 
rehabilitation robots assist an indi-
vidual with motion, the robot may be 
responsible for physical safety (keep-
ing someone upright) while simulta-
neously maximizing therapy benefit, 
requiring it to stay out of the way as 
much as possible. Thus, the system is 
tasked to assist, but not to over-assist. 
This fundamental tension between 
the two purposes of the automation 
with respect to the human leads to 
challenging questions in terms of 
specification (for example, how does 
one articulate the notion of safety 
while avoiding over-assisting?) and 
verification (for instance, how does 
one prove that the control methods 
satisfy the specification?).

Healthcare Robotics: There are a 
variety of robots being developed to as-
sist people with activities of daily living, 
including physical mobility, manipula-
tion, medicine reminders, and cognitive 
support. Robots are also developed to 
support clinicians, caregivers, and other 
stakeholders in healthcare contexts.27

For example, physically assistive 
robots, such as exoskeletons and ro-
botic prostheses, can help individuals 
perform movements, such as walking 
and reaching. Socially assistive robots 
can help individuals engage in positive 
health behaviors, such as exercise and 
wellness.23 People have different abili-
ties and disabilities that may change 
over short- and long-term horizons. 
Therefore, modeling a person’s ability 
and personalizing the system is crucial 
for creating successful HRI systems in 
the healthcare domain.

Autonomous Driving: Recent years 
have seen significant advances in au-
tonomous driving. As these fully or 
semi-autonomous vehicles appear on 
the road, challenges arise due to in-
teractions with humans. Humans, in 
the context of autonomous driving, 
fall into three main categories: drivers 
or riders in the autonomous vehicle, 

Domains of HRI that could benefit from formal methods.

Clockwise from top left, physical HRI 
(construction), physical HRI in healthcare 
(rehabilitation), autonomous driving, social 
HRI, and cognitive healthcare. 
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assertion monitors for robot-to-human 
handover tasks.3

Other researchers have focused on 
socio-cyber physical systems, for in-
stance by including human factors—
ranging from specific roles of humans, 
their intentions, legal issues, and levels 
of expertise—into cyber-physical sys-
tems.6 Other work models an assisted-
living scenario as a Markov decision 
process,22 making use of the probabi-
listic model-checker PRISM.17

Challenges for  
the Research Community
Work described above suggests the 
promise of introducing formal meth-
ods and techniques into HRI domains. 
That said, creating and reasoning 
about trustworthy HRI requires ad-
dressing HRI’s unique aspects and re-
thinking current approaches to system 
verification, validation, and synthesis. 
In this section, we distill three unique 
aspects of HRI research posing a chal-
lenge for formal methods: designing 
useful HRI specifications, dealing with 
expected human adaptation to the au-
tomated system, and handling the in-
herent variability of humans. For each 
challenge domain, we identify high-
priority research directions that could 
drive progress toward creating trust-
worthy HRI systems.

Designing formal HRI specifica-
tions: Whenever verifying, testing, or 
synthesizing a system, one needs to for-
malize the system by defining the state 
space of the model and the specifica-
tion of interest. For example, in the con-
text of autonomous cars obeying the law 
and social conventions, the state space 
may include the position and velocity 
of the car and any other cars in the en-
vironment. The specification may rep-
resent a requirement of the form, ‘the 
car never exceeds the speed limit and 
always maintains a safe distance from 
all other cars.’ In the context of HRI, de-
signing useful specifications raises sev-
eral research questions:

 ˲ What should be the space of speci-
fications? In HRI, simply modeling 
the physical state of the robot and the 
human is usually not enough. The 
physical state does not capture require-
ments such as avoiding over-assisting a 
person or maintaining social and cul-
tural norms. We need to create richer 
spaces that enable the writing of such 

specifications while balancing the 
complexity of the algorithms that will 
be used for verification and synthesis 
in these spaces.

 ˲ How do we write specifications 
that capture trust? A human will only 
trust a robot to react in a safe way if it 
obviously and demonstrably does so. 
Hence, the robot needs to not only be 
safe but also be perceived as safe, which 
may require a considerable safety 
margin. On the other hand, when the 
interaction involves shared human-
robot control, equally important to 
the idea of humans trusting the robot 
is the notion of whether and to what 
extent the robot can trust the human. 
This plays a role in determining under 
what circumstances the robot should 
step in and in what manner. Particu-
larly in safety-critical scenarios, and 
when the robot is filling a gap in the 
human’s own capabilities, reasoning 
about trust in the human is key. Criti-
cal factors are to measurably assess the 
human’s ability to actually perform the 
task, and the human’s current state, 
for instance accounting for levels of fa-
tigue. These notions of trust go beyond 
typical safety and liveness specifica-
tions and require specification formal-
isms that can capture them.

 ˲ What should be the definition of 
failure? Beyond failure with respect to 
physical safety, which is well studied in 
the literature, interaction failures may 
have varying impacts. A small social 
gaffe, such as intruding on personal 
space, may not be an issue, but a large 
mistake, such as dropping a jointly ma-
nipulated object, might have a long-
term effect on interaction. We need to 
be able to define specifications that 
capture the notion of social failure and 
develop metrics or partial orders on 
such failures, so that the systems can 
fail gracefully.

 ˲ How can we formalize the hu-
man’s behavior during an interaction? 
A common technique in verification is 
assume-guarantee reasoning, where 
a system’s behavior is verified only 
under the assumption that its input 
satisfies a well-defined specification. 
If the input violates the assumption, 
the system behavior is no longer guar-
anteed. Given our understanding and 
observations of human-human and 
human-robot interactions, a challenge 
for synthesizing and verifying HRI is to 

people in conversations to get them to 
their destinations.

Social collaborations across many 
domains can be characterized by the 
use of social actions, such as verbal 
and nonverbal communication, to 
achieve a shared goal. Social collabo-
ration typically requires the agents 
involved to maintain a theory of mind 
about their partners, identifying what 
each agent believes, desires, and aims 
to achieve. In social collaboration, it 
is important that the robot follows so-
cial norms and effective collaboration 
practices, for example not interrupt-
ing the speaker and providing only 
true and relevant information.9 If a ro-
bot fails to follow such conventions, it 
risks failing at the collaboration due to 
lack of trust or other social effects. One 
major challenge in formalizing social 
collaborations is how to encode social 
norms and other behavior limitations 
as formal constraints. Researchers in-
terested in verifying or synthesizing so-
cial collaborations will have to identify 
which social behaviors and which ele-
ments of the task are important for the 
collaboration to succeed.

Work in Formalizing HRI
Researchers in computational HRI29 
have developed models for human be-
havior, for human-robot collaboration 
and interaction, and algorithms that 
have been demonstrated in various HRI 
domains. Whereas these approaches 
are evaluated qualitatively and quantita-
tively, the HRI research community has 
not often formalized what constitutes 
correct behavior. Generally speaking, 
there are very few examples of formal 
specifications, or algorithms that can 
verify or synthesize such specifications.

In the past few years, collabora-
tions between HRI researchers and 
researchers studying formal methods, 
verification, and validation have begun 
to address the challenge of formalizing 
specifications and creating demon-
strably trustworthy HRI systems. Some 
efforts have explored linear temporal 
logic as a formalism to capture and ver-
ify norms in an interaction25 and to syn-
thesize human-in-the-loop cyber-phys-
ical systems.21 Other examples include 
using satisfiability modulo theories for 
encoding social navigation specifica-
tions,7 signal temporal logic for hand-
over behavior,16 and automata-based 
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other, it is important to reason about 
the positive and negative feedback 
loops that emerge and their effect on 
the resulting interaction. These feed-
back loops can take the human-robot 
systems to desirable or undesirable 
equilibria. For example, the difference 
between driving cultures around the 
world may be explained by repeated 
interactions between drivers causing 
behavioral feedback loops, leading 
to emergent locally distinct conven-
tions. We need to study the long-term 
behavior of repeated interactions and 
adaptations and verify the safety of the 
resulting emergent behaviors.

Variability among human interac-
tants: While we can reasonably assume 
that the model of a particular type of 
robot is the same for all robots of that 
type, there does not exist a model of a 
“typical” human—one size does not 
fit all. Even identifying the proper pa-
rameters or family of parameters that 
encapsulate the types of variability in 
people is a seemingly impossible task. 
People differ across backgrounds, 
ages, and abilities, which raises the im-
portant question of how much to per-
sonalize the model and specification to 
a specific individual or population:

 ˲ Can we identify general specifica-
tions for which one, simple human 
model is enough? Is it possible to cre-
ate a basic, human-centric and applica-
tion-agnostic model of human behav-
ior that indicates a basic specification, 
such as loss of engagement of a hu-
man in the interaction? Such a generic 
model can detect behavior outside the 
expected, for example distraction or 
lack of attention, and could be used 
to trigger safety measures irrespective 
of the specific application area. A cur-
rent example for such a model is used 
in driver assist systems; they measure 
where the driver is looking, suggest-
ing the driver take a break if they detect 
staring or lack of eye movement—uni-
versal signs of sleepiness.

 ˲ What levels of personalization are 
needed? Refining the research ques-
tion above, it is important to study not 
only the formalisms that allow models 
and specifications to be personalized 
but also to what extent personalization 
is required for smooth interaction, 
what are the trade-offs between the 
complexity of the model and improved 
interaction, and what metrics enable 

formalize assumptions on the behav-
ior of the human—who provides the 
input of the HRI system—in a way that 
supports verification, is computation-
ally tractable, and captures the unique 
characteristics of humans.

Adapting to human adaptation: Dur-
ing interaction, humans and robots will 
engage in mutual adaptation process-
es.12 For example, people become less 
cautious operators of machines (cut-
ting corners, giving a narrower berth to 
obstacles) as they become more famil-
iar with them. Therefore, any models 
used to represent the interaction and 
reason about it must capture this adap-
tation. To complicate matters, the tem-
poral adaptation may occur at differ-
ent time scales: short time scales, such 
as morning vs. evening fatigue, and 
longer time scales, such as functional 
ability improvement or deterioration 
over months.11,12 Changing models in 
and of themselves makes formalizing 
HRI more complicated, but it is the 
diversity of the ways humans adapt to a 
task and a teammate that makes their 
accurate modeling even more challeng-
ing. This property brings up the follow-
ing research challenges:

 ˲ Which mathematical structures 
can capture non-stationary models? 
Mutual adaptations are common in hu-
man-human interaction. For example, 
humans build conventions when com-
municating with each other through 
repeated interactions using language 
or sketches.32 Studying these interac-
tions and formalizing them can form 
the basis for new HRI models. When 
developing such models, an important 
consideration is how to capture the dif-
ferent time scales of adaptation.

 ˲ How can the robot detect and rea-
son about the human’s adaptation? As 
humans adapt to the interaction, their 
behavior (and thus the input to the in-
teraction) may change. For example, 
people may become less emotionally ex-
pressive as the novelty of the interaction 
wears off, or they may give less control 
input as they trust the autonomy of the 
system more. This creates a challenge 
at runtime when a robot is attempting 
to ascertain how the human adapted. 
We need to develop runtime verification 
algorithms that can detect such adapta-
tion and influence the interaction.

 ˲ How to model feedback loops? As 
the robot and the human adapt to each 

Modeling  
a person’s ability 
and personalizing 
the system  
is crucial  
for creating 
successful  
HRI systems  
in the healthcare 
domain.
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reasoning about the trade-offs. For this 
purpose, models of mental representa-
tions (for example, levels of cognitive 
control for error-free decision-mak-
ing26) could be useful.

 ˲ How can we model the human’s 
ability level? The interaction should 
be appropriate for the ability level of 
the person. When humans are better 
off completing a task on their own, too 
much assistance is not desirable; for 
example, in therapeutic and educa-
tional settings. In other cases, too little 
assistance can be frustrating and lead 
to disengagement. It is important to 
model both the ability and the modes 
of interactions that are most appropri-
ate for each task.

 ˲ How do we formalize experiential 
considerations? People from different 
backgrounds may have different as-
sumptions24 and expectations19 from 
robots and may perceive the interac-
tion with the robot differently. Since 
meeting user expectations is important 
for fostering trust between the human 
and the robot,13,18 the personalization 
of the interaction should consider the 
experiential background of the user, 
who may expect the robot to be, for 
example, more assertive and active, or 
more reserved and passive.

Conclusion
As robots begin to interact closely with 
humans, we need to build systems wor-
thy of trust regarding both the safety 
and the quality of the interaction. To do 
so, we have to be able to formalize what 
a “good” interaction is, and we need al-
gorithms that can check that a given sys-
tem produces good interactions or can 
even synthesize such systems.

To make progress, we must first ac-
knowledge that a human is not anoth-
er dynamic physical element in the 
environment, but has beliefs, goals, 
social norms, desires, and preferenc-
es. To address these complexities, we 
must develop models, specifications, 
and algorithms that use our knowl-
edge about human behavior to create 
demonstrably trustworthy systems. 
In this article, we identified a num-
ber of promising research directions 
and we encourage the HRI and for-
mal methods communities to create 
strong collaborations to tackle these 
and other questions toward the goal 
of trustworthy HRI.


