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Abstract— We present a controller for human-robot han-
dovers that is automatically synthesized from high-level specifi-
cations in Signal Temporal Logic (STL). In contrast to existing
controllers, this approach can provide formal guarantees on
the timing of each of the handover phases. Using synthesis also
allows end-users to specify and dynamically change the robot’s
behaviors using high-level requirements of goals and constraints
rather than by tuning low-level controller parameters. We
illustrate the proposed approach by replicating the behavior of
existing handover strategies from the literature. We also identify
specification parameters that are likely to lead to successful
handovers using a public database of human-human handovers.

Index Terms— Human-Robot Handovers, Formal Methods,
Signal Temporal Logic, Human-Robot Interaction

I. INTRODUCTION

In this paper, we propose the automatic synthesis of robot
controllers for human-robot handovers from formal specifica-
tions. Object handovers are a central aspect of human-robot
collaboration in both industrial and domestic environments.
Examples include a collaborative factory robot exchanging
parts with a human co-worker, a surgical assistant robot
transferring instruments to or from a surgeon, a warehouse
robot helping a human shelve items, a domestic robot un-
loading a dishwasher, and a caregiver robot providing food
or medicine to bedridden people. These tasks include both
human-to-robot and robot-to-human handovers.

Most of the research on human-robot handovers uses
hand-coded controllers [1]–[5], where the robot’s behavior
is predefined and programmed manually by engineers. A
more flexible approach is learning-from-demonstration [6]–
[10], where the robot learns the entire handover or some
parameters associated with it via demonstrations. These
demonstrations can consist of human-human handovers or
of a human guiding the robot through the motion. Some
researchers have also developed motion planners for offline
generation of the robot’s handover trajectory [11]–[13].

While these approaches can result in successful bi-
directional human-robot handovers, they have several short-
comings. First, they do not provide guarantees on the timing
of different stages of a handover. Such timing guarantees may
be crucial in productivity oriented industrial tasks and fast-
paced life-critical scenarios like surgery. Another drawback
of existing approaches is that they do not allow users to
specify and dynamically change behaviors using high-level
abstractions of goals and constraints. Instead, they require
users to tune controller parameters, which is often infeasible
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Fig. 1: Our approach to human-robot handovers uses the automatic synthesis
of a robot controller from formal specifications written in Signal Temporal
Logic. Users can change the robot’s behavior with high-level requirements
of goals and intuitive parameters such as the timing of different stages
of handovers. The controller is then synthesized online based on a given
human-motion prediction model and a world dynamics model.

or non-intuitive. Finally, given the multitude of handover
strategies that have been proposed in the literature for human-
robot handovers, there is no unified framework to easily
switch between those strategies. Our proposed approach,
shown in Fig. 1, tries to address these limitations.

We exemplify the possibility of automatically synthesizing
handovers by specifying the robot’s handover behavior using
Signal Temporal Logic (STL) [14] formulae. STL is well-
suited to the handover domain as it enables reasoning about
timings and distances. Using STL, the user can change
the robot’s behavior by specifying intuitive parameters like
the timing of different phases of handovers and safety
constraints. In this paper, we present specification templates
both for human-to-robot and for robot-to-human handovers,
and illustrate the flexibility of our approach by reproducing
existing human-robot handover strategies found in the litera-
ture. We then use the same specifications in conjunction with
a human-human handover data-set to identify parameters that
can lead to successful human-robot handovers.

II. RELATED WORK

A. Human-Robot Handovers

Existing approaches to human-robot handovers can be
broadly categorized into two groups: offline and online.
Most of the prior work on human-robot handovers has
focused on offline approaches, in which the robot’s motion is
planned before the start of a handover. These approaches do
not take into account the observed behavior of the human
during a handover and, instead, the human has to adapt
to the robot. Human-Robot Interaction (HRI) researchers
have studied different aspects of handovers enabling offline
planning, including the handover location and configura-
tion [2], the effect of accompanied gaze behaviors [3], the
effect of the user’s level of experience [5]. All of these



systems used hand-coded controllers. Going beyond hand-
coding the full handover trajectory, a few researchers have
proposed offline motion planners for robot-to-human han-
dovers [11], [13]. Another direction of research has focused
on learning robot motions from demonstrations of human-
human handovers [6], [8], [10]. All of these approaches are
offline and hence lack adaptability to the human’s motion.

Some have proposed online controllers for human-robot
handovers that do take into account the observed human
motion [4], [7], [12], [15], [9]. Huang et al. [4], proposed
three strategies for robot-to-human handovers, two of which
enable the robot to adapt to the receiver’s task demand. But
they also used preprogrammed robot trajectories in these
strategies. Yamane et al. [7] used a human-motion database
to generate the robot’s motion corresponding to the observed
human motion, but this approach does not have mechanisms
to respond to the human’s motions that are not present in
the database. Prada et al. [12], proposed a control system
based on Dynamic Movement Primitives (DMP) formalism
to drive the robot along human-like trajectories towards the
human hand. Micelli et al. [15], proposed a proportional
velocity controller to move the robot towards the human
hand. Medina et al. [9], estimated the handover location
online by modeling the human’s motion as a linear dynamical
system, and employed an impedance-based control scheme
to drive the robot towards the predicted handover location.
While these approaches enable the robot to adapt to the
human’s motion, they require tuning controller parameters
(e.g., the weights of DMP terms or the velocity-tracking
gain) to achieve a specific robot behaviors.

B. Automatic Synthesis of Robot Control for HRI

Automatic synthesis of robot controllers outside of HRI
has been gaining interest in the past several years [16] and
has been demonstrated on a variety of platforms including
mobile robots, UAVs, autonomous cars, modular robots,
mobile manipulators, swarm robots and humanoids. Still,
very little work has been done regarding synthesis for HRI.

In the area of formal methods, Araiza-Illan et al. [17]
and Webster et al. [18] applied probabilistic model-checking
in a human-robot handover task, verifying a controller with
respect to safety and liveness specifications. But these works
consider a given controller and do not deal with the synthesis
of one. Li et al. [19] presented a formalism for human-in-the-
loop control synthesis and synthesized a semi-autonomous
controller from temporal logic specifications, but the HRI
aspects were limited to human intervention and correction
of the robot’s operation, and not to the actual handover
interaction. To the best of our knowledge, there is no prior
work on synthesis for human-robot handovers.

III. SIGNAL TEMPORAL LOGIC FOR ROBOT CONTROL

Automatic synthesis of robot control [16] has been demon-
strated using a number of formalisms, including discrete
logic such as Linear Temporal Logic (LTL), probabilistic
logic such as Probabilistic Computation Tree Logic (PCTL)
and metric logic such as Signal Temporal Logic (STL). We

choose STL for human-robot handovers, as it allows speci-
fications that include distances, timing, and object states.

A. Signal Temporal Logic

STL formulae are composed of predicates πγ : Rn → B
over continuous signals. The truth value of a predicate πγ

is determined by the sign of a function γ : Rn → R of an
underlying signal s. STL formulae are defined recursively
according to the following grammar:

ϕ ::= π
γ | ¬ϕ | ϕ1∧ϕ2 | ϕ1∨ϕ2 |�[a,b]ϕ | ϕ1U[a,b]ϕ2 | ♦[a,b]ϕ

where a,b ∈R≥0. The operators � (“Always”), ♦ (“Eventu-
ally”) and U (“Until”) can also be unbounded.

The satisfaction of an STL formula ϕ with respect to the
signal s at time t is defined inductively as follows:

(s, t) |= π
γ ⇐⇒ γ(s(t))> 0

(s, t) |= ¬π
γ ⇐⇒ ¬((s, t) |= π

γ)

(s, t) |= ϕ1∧ϕ2 ⇐⇒ (s, t) |= ϕ1∧ (s, t) |= ϕ2

(s, t) |= ϕ1∨ϕ2 ⇐⇒ (s, t) |= ϕ1∨ (s, t) |= ϕ2

(s, t) |=�[a,b]ϕ ⇐⇒ ∀t ′ ∈ [t +a, t +b],(s, t ′) |= ϕ

(s, t) |= ϕ1U[a,b]ϕ2 ⇐⇒ ∃t ′ ∈ [t +a, t +b] s.t. (s, t ′) |= ϕ2

∧∀t ′′ ∈ [t, t ′],(s, t ′′) |= ϕ1

(s, t) |= ♦[a,b]ϕ ⇐⇒ ∃t ′ ∈ [t +a, t +b] s.t. (s, t ′) |= ϕ

A signal s = s0s1s2... satisfies ϕ , denoted by s |= ϕ , if
(s,0) |= ϕ . Informally, s |=�[a,b]ϕ if ϕ holds at each time
between a and b. s |= ϕ1U[a,b]ϕ2 if ϕ2 holds at some time c
between a and b, and ϕ1 holds at each time between a and
c. s |= ♦[a,b]ϕ if ϕ holds at some time between a and b.

B. Receding Horizon Control Synthesis from STL

For controller synthesis, STL specifications can be au-
tomatically transformed into mixed integer linear programs
(MILP) and solved either globally for a sequence of control
actions or iteratively in a receding horizon manner [20] [21].
In this paper, we use the receding horizon control (RHC)
synthesis algorithm presented by Raman et al. [20]: Given
a system of the form xt+1 = f (xt ,ut), initial state x0, STL
formula ϕ , cost function J and finite horizon H, the following
optimization problem is solved at each time-step t:

argminuH,t J(x(xt ,uH,t),uH,t)

s.t. x(x0,u0) |= ϕ
(1)

where uH,t = ut
0,u

t
1,u

t
2...u

t
H is the horizon-H control input

sequence computed at each time step and x(xt ,uH,t) =
xt ,xt+1,xt+2...xt+H is the sequence of system states over the
horizon H. Though the control input is computed over the
horizon H, only the first control is applied at each time-
step and the horizon is calculated again. Thus in Eq. 1,
u0 = u0

0,u
1
0,u

2
0, ... is the applied control sequence consisting

of only the first control inputs of uH,t with x(x0,u0) =
x0,x1,x2... being the sequence of system states as a result
of the input u0.



IV. FORMULATION OF HANDOVERS IN SIGNAL
TEMPORAL LOGIC (STL)

To specify human-robot handovers in STL, we first define
the following variables. Bold letters denote vectors.
Pose:
• pi = [xi,yi,zi] and qi = [qx,i,qy,i,qz,i,qw,i] represent the

position and orientation vectors in 3D space, jointly
called ‘pose’. Subscript i ∈ {r,h,o, l,d,η} refers to: r
= robot, h = human, o = object, l = handover location,
d = object drop-off destination, η = robot home pose.

• qδ is the offset between the robot end-effector’s orienta-
tion and the human hand’s orientation, when they both
hold the object.

• εp and εq are the permitted tolerances (errors) in the
robot end-effector’s position and orientation from any
desired position and orientation.

Gripper and Hand:
• gr and gh ∈ [0,1] are the robot gripper and human hand

“openness” (0 for fully closed, 1 for fully open).
• g∗ ∈ [0,1] is the grip-width of the object.
• εg is the permitted tolerance (error) between a grip-

per/hand openness from a desired level of openness.
Force Sensing:
• αr ∈ [0,1] is the proportion of the weight (or the “load-

share”) of the object supported by the robot.
• δ1, δ2 are thresholds on the load share specifying

holding and releasing states.
Other:
• lh is the radius of a “handover zone” centered around

the robot’s base.
• e is a boolean variable used to specify that the handover

has started.
Assumptions: We represent all the poses in the frame

attached to the base of the robot, as shown in Fig. 2. We
assume that the human hand always remains in the dextrous
workspace of the robot. We consider that the human is ready
for the handover if the human hand is within a region of
radius lh centered at the robot’s base, which we call the
handover zone. For human-to-robot handovers, we assume
that the human hand contains the object at the start of
the handover, and also assume that the object’s drop-off
destination location is in the dextrous workspace of the
robot. For robot-to-human handovers, we assume that the
object is initially in the dextrous workspace of the robot.
For simplicity, we consider that there is only one object in
the workspace, but the formulation can be easily extended
to multiple objects.

A. System Representation

We model the robot’s end-effector’s motion as a linear
system with its pose and gripper openness making up the
system state x. The end-effector velocity and the gripper’s
opening velocity are the control input u, constrained by
umin ≤ u ≤ umax.

ẋ =
[
ṗr, q̇r, ġr

]T
= u (2)

Fig. 2: Human-Robot object handover reference frames. All poses are
expressed in the frame attached to the base of the robot.

We choose velocity control as it enables control over the
timing of the pose trajectory. Also, velocity control is the
most suitable choice for reactive trajectory modification and
online motion planning [22]. We represent the world state
w as the pose of the human’s hand, the human’s hand’s
openness, and the pose of the object.

w =
[
ph,qh,gh,po,qo

]T (3)

To simplify the specification formulae, we create sets of
robot, human and object states and represent them using the
discrete variable o∈ {os,or,oh,og}, defined in Table I. If the
robot’s gripper is equipped with a force sensor, the load-
share estimate αr is used to determine o, similar to Medina
et al. [9]. Otherwise, we use the human’s hand state gh and
the robot end-effector state gr.

In the following sections we deal with human-to-robot
handovers and robot-to-human handovers separately.

B. Specifications for Human-to-Robot Handovers

From a receiver’s perspective, a handover consists of three
phases: a reach phase in which the receiver moves to the
handover location, a transfer phase in which the receiver
grasps the object and the giver releases the object, and a
retreat phase in which the receiver moves to the object’s
drop-off destination location. When the robot is the receiver,
we specify its behavior in terms of timing constraints on
these three phases (Table II top).
• Reach: The robot should reach the handover location
[pl,ql] within t1 seconds after the handover signal e.

• Transfer: The robot should grasp the object within t2
seconds after it reaches the object’s location.

• Retreat: The robot should retreat to the object’s drop-off
location [pd,qd] within t3 seconds after it has the object
and release the object in t4 seconds after reaching the
object’s drop-off location.

C. Specifications for Robot-to-Human Handovers

From a giver’s perspective, a handover consists of four
phases: a pick-up phase in which the giver moves to the
object’s location and grasps the object, a reach phase in
which the giver moves the object to the handover location, a
transfer phase in which the giver releases the object and the



TABLE I: Discrete object states defined for robots without and with a gripper force sensor.
State Formula (without Force Sensor) Formula (with Force Sensor)

or (object is with the robot) (‖po−pr‖ ≤ εp ∧ ||gr−g∗|| ≤ εg) ∧ ¬(‖po−ph‖ ≤ εp ∧ ||gh−g∗|| ≤ εg) αr > δ2
oh (object is with the human) ¬(‖po−pr‖ ≤ εp ∧ ||gr−g∗|| ≤ εg) ∧ (‖po−ph‖ ≤ εp ∧ ||gh−g∗|| ≤ εg) αr ≤ δ1 ∧ ‖po−ph‖ ≤ εp
os (object is shared by both) (‖po−pr‖ ≤ εp ∧ ||gr−g∗|| ≤ εg) ∧ (‖po−ph‖ ≤ εp ∧ ||gh−g∗|| ≤ εg) δ2 ≥ αr > δ1
og (object is on the ground) ¬(‖po−pr‖ ≤ εp ∧ ||gr−g∗|| ≤ εg) ∧ ¬(‖po−ph‖ ≤ εp ∧ ||gh−g∗|| ≤ εg) αr ≤ δ1 ∧ ‖po−ph‖> εp

receiver grasps the object, and a retreat phase in which the
giver moves back to its original position. When the robot
is the giver, we specify its behavior in terms of timing
constraints on these four phases (Table II bottom).
• Pick-up: The robot should reach the object’s location

within t5 seconds and grasp the object within t6 seconds
after reaching the object’s location.

• Reach: The robot should take the object to the handover
location [pl,ql] within t7 seconds after the handover
signal e.

• Transfer: The robot should release the object within t8
seconds after the object is shared by both.

• Retreat: The robot should retreat to a home position
[pη ,qη ] within t9 seconds after the human has received
the object.

V. SPECIFYING DIFFERENT HANDOVER STRATEGIES

To illustrate the flexibility of our approach, we list specifi-
cations for four different handover strategies, three of which
are found in the literature. These differ only in the way the
reach phase is specified. For each of these strategies, the
specification in Table III replaces the reach phase specifica-
tion in Table II.
• Proactive, Predetermined: The robot should reach a pre-

defined or offline computed handover location [p∗,q∗]
without waiting for the human’s hand to enter the
handover zone. This behavior is similar to the robot’s
behavior presented by Moon et al. [3] and the “proac-
tive” strategy presented by Huang et al. [4].

• Proactive, Towards Human: The robot should reach the
human’s hand without waiting for the human’s hand to
enter the handover zone.

• Reactive, Predetermined: The robot should reach a pre-
defined or offline computed handover location [p∗,q∗],
only when the human hand is in the handover zone. This
is similar to the “reactive” strategy by Huang et al. [4].

• Reactive, Towards Human: The robot should reach the
human’s hand, only when the human’s hand is in the
handover zone. This behavior is similar to the behaviors
presented by Micelli et al. [15] and Medina et al. [9].

VI. EVALUATION

In this section, we present simulated runs to demonstrate
the different robot behaviors synthesized from the specifica-
tions described in Section IV. We also show how different
choices of reach-time parameters affect the expected success
rate of the handover, as evaluated on a public data-set of
human-human handovers. We only present the simulations
of the reach phase since the other phases have the same
specifications in all the presented strategies. Also, we only

consider the position trajectory of the human hand and
synthesize the position trajectory of the robot, since the
orientation trajectory of the robot depends on the offset qδ

specific to the object being handed over.

A. Implementation

We use the MATLAB ‘BluSTL’ toolbox [23] to synthesize
controllers from the system dynamics and specifications.
This toolbox implements the RHC synthesis algorithm de-
scribed in Section III-B. Since this toolbox accepts only
linear and affine predicates, we use the l1 norm in the
specifications. For the objective function, J in Eq. 1, we use

J(x(xt ,uH,t),uH,t) =
H

∑
k=0
||ut+k|| (4)

to suggest that the robot move with minimum mean velocity.
The receding horizon control synthesis from the STL

specifications depends on the predicted behavior of the en-
vironment w over the horizon H. Specifically, the prediction
horizon H has to be greater than the maximum ti value in the
specifications. At each time-step, we predict the motion of
the human by a Linear Dynamical System (LDS) ṗh = Aph.
Similar to the approach used by Medina et al. [9], we use
the pose data of the human for a pre-defined time interval
before the current time-step and estimate the matrix A using
least squares approximation. Then the predicted motion of
the human is given by:

ph(t0 + t) = ph(t0)+(tδt)Aph(t0) ∀ t ∈ [0,H] (5)

where H is the prediction horizon and δt is the sampling
time. We update this estimate at each time-step using the
position of the human hand and generate the control input
for the next time-step. If no feasible control input is found,
the robot stops.

B. Simulations

Fig. 3 shows the simulated robot end-effector’s trajectories
for each of the four reach-phase strategies for the same
human hand motion. The values of the STL parameters are:
t1 (reach time) = 3s, εp = 0.01m, |ui| ≤ 1m/s, δt (control
input sampling interval) = 0.2s, H = 15 time-steps. For
readability, we only show the x axis projection. Each strategy
results in a different robot trajectory. In the “Predetermined”
strategies (Fig. 3, top row), the robot goes to a fixed handover
location regardless of the human’s motion and thus may
require adjustment on the human’s part to reach the handover
location. In the “Towards Human” strategies (Fig. 3, bottom
row), the robot moves to the human hand’s location. In the
“Proactive” strategies (Fig. 3, left column), the robot starts to
move towards the handover location even if the human hand



TABLE II: STL Specifications for Human-to-Robot Handovers
Robot’s Role Phase Specification

Receiver

Reach �(e ⇒ ♦[0,t1 ](||pl−pr||< εp ∧ ||ql−qr||< εq))
Transfer �((||po−pr||< εp ∧ (o == oh ∨ o == os)) ⇒ ♦[0,t2 ](||gr−g∗||< εg))

Retreat �((o == or) ⇒ ♦[0,t3 ](||pr−pd||< εp ∧ ||qr−qd||< εq))
�((||pr−pd||< εp ∧ ||qr−qd||< εq ∧ o == or) ⇒ ♦[0,t4 ](||gr−1||< εg))

Giver

Pick-up �((o == og) ⇒ ♦[0,t5 ](||po−pr||< εp ∧ ||qo−qr||< εq))
�((||po−pr||< εp ∧ ||qo−qr||< εq ∧ o == og) ⇒ ♦[0,t6 ](||gr−g∗||< εg))

Reach �(e ⇒ ♦[0,t7 ](||pl−pr||< εp ∧ ||ql−qr||< εq))
Transfer �((o == os) ⇒ ♦[0,t8 ](||gr−1||< εg))
Retreat �((o == oh) ⇒ ♦[0,t9 ](||pr−pη ||< εp ∧ ||qr−qη ||< εq))

TABLE III: STL Specifications for Reach-Phase Strategies
Robot’s Role Strategy Target Specification

Receiver
Proactive Predetermined �(¬(o == or) ⇒ ♦[0,t1 ](||p∗−pr||< εp ∧ ||q∗−qr||< εq))

Towards Human �(¬(o == or) ⇒ ♦[0,t1](||ph−pr||< εp ∧ ||qh−qr−qδ ||< εq))

Reactive Predetermined �((¬(o == or)∧||ph|| ≤ lh) ⇒ ♦[0,t1 ](||p∗−pr||< εp ∧ ||q∗−qr||< εq))
Towards Human �((¬(o == or)∧||ph|| ≤ lh) ⇒ ♦[0,t1 ](||ph−pr||< εp ∧ ||qh−qr−qδ ||< εq))

Giver
Proactive Predetermined �((o == or) ⇒ ♦[0,t7 ](||p∗−pr||< εp ∧ ||q∗−qr||< εq))

Towards Human �((o == or) ⇒ ♦[0,t7 ](||ph−pr||< εp ∧ ||qh−qr−qδ ||< εq))

Reactive Predetermined �((o == or ∧||ph|| ≤ lh) ⇒ ♦[0,t7 ](||p∗−pr||< εp ∧ ||q∗−qr||< εq))
Towards Human �((o == or ∧||ph|| ≤ lh) ⇒ ♦[0,t7 ](||ph−pr||< εp ∧ ||qh−qr−qδ ||< εq))

is not in the handover zone, while in “Reactive” strategies
(Fig. 3, right column) the robot starts to move towards
the handover location only when the human hand is in the
handover zone. These strategies result in different values for
human and robot idle times, which have been shown to be
indicators of perceived human-robot fluency [24].

In addition to specifying overall strategies, the STL formu-
lation allows users to specify high-level timing constraints for
the handover, resulting in different controllers. To illustrate,
Fig. 4 shows simulated robot trajectories for different values
of t1. The values of the other parameters are: εp = 0.01m,
|ui| ≤ 1m/s, δt = 0.2s, H = 15 time-steps. In this example,
a specification of t1 = 1s (reaching the handover location
within one second) results in the controller being unable to
find a control input, causing the robot to stop. For t1 = 2s
and t1 = 3s the robot reaches the handover location within
the specified time limit, with different human idle times. The
accompanying video shows the simulations.

C. Inferring Timing Parameters from a Handover Database

In addition to the possibility to synthesize a single con-
troller for a given specification, our approach provides an
additional benefit: the ability to estimate constraints on the
high-level behavior of the robot under different circum-
stances. We illustrate this here by finding feasible bounds
for t1 based on a public database of human-human han-
dovers [25]. This database of 1000 recordings was collected
from 18 volunteers in 76 test configurations with different
volunteer’s starting positions, roles, objects to pass and mo-
tion strategies. In our evaluation, we only use the trajectories
for “uncontrolled” (the experimenter is not one of the actors)
and “no-approach” (the volunteers are already standing close
to each other) configurations. This results in a dataset of 72
giving motions and 72 receiving motions.

Table IV shows the percentage of the human’s giving
motions from the database for which the controller finds a
feasible solution for a given reach-time value and a maximum

velocity control input umax. The values of the remaining STL
parameters are: εp = 0.01m, δt = 0.2s, H = 20 time-steps. An
end-user could use results like these to estimate the timing,
and thus the productivity, of a handover system given a safety
cap on the robot’s velocity.

TABLE IV: Handover success rate for different reach-times.
umax(m/s) t1(s) Successful Handovers

1
1s 14.3%
2s 91.4%
3s 100%

0.5
2s 2.9%
3s 82.9%
4s 97.1%

VII. DISCUSSION

We present an approach to human-robot handovers that
works at a high-level abstraction of goals and constraints.
Our approach differs from existing handover controllers,
which use hand-coded algorithms tuned via low-level pa-
rameters. In addition, the presented controller is synthesized
online, enabling the robot to adapt to the human’s observed
behavior. To date, most of the literature on human-robot
handovers uses offline motion planning, with very few online
approaches. Also, almost all the work on handovers discusses
a single robot behavior. Although it is conceivable to write
a program with different robot behaviors and allow the
user to switch between them, the approach in this paper
proposes a more unified view of this central aspect of HRI.
It also allows end-users to specify the handover in terms
meaningful to them. Since it is difficult for naı̈ve users to
write STL specifications, we plan to develop an intuitive user
interface using which they can modify the STL specifications
presented in this paper. In the interface, users will be able
to change the timing values of handover phases and switch
between different strategies.



(a) Proactive, Predetermined (b) Reactive, Predetermined

(c) Proactive, Towards Human (d) Reactive, Towards Human

Fig. 3: Simulation runs of different handover strategies. “Proactive” strategies (left column) may result in shorter human idle time but longer robot idle
time, while “Reactive” strategies (right column) may result in shorter robot idle time but longer human idle time. A predetermined handover location may
require adjustment on the human’s part (top row), while the human hand as the handover location (bottom row) does not require any adjustment on the
human’s part. However, this may result in robot trajectories with overshoot (bottom-left) or the robot initially moving away from the human (bottom-right),
due to the prediction of the human-motion model.

Using automatic synthesis based on formal models, our
approach provides timing guarantees, which means that
the robot will always obey timing constraints as long as
the human behavior allows for it. It can also notify users
of constraint violations. Furthermore, our approach enables
estimates of constraint parameters based on human motion
data. Another advantage of our approach is that alternative
optimization criteria, for example, minimum jerk or mini-
mum acceleration, can be used in Eq. 1 to change the robot’s
trajectory while obeying the timing constraints. In this paper,
due to paucity of space we only presented simulation results
by modeling the human’s motion as a Linear Dynamical
System. Alternative models such as linear/exponential ex-
trapolation and neural networks could also be used to predict
the human’s motion.

In the formulation presented in this paper, we do not
address obstacle or self-collision avoidance. This is a com-
mon limitation in existing online human-robot handover
controllers [12], [15], [9], [7]. We can add obstacle location
pobstacle as an additional environment variable in Eq. 3 and
write a safety specification of the form �(||pr−pobstacle||>
εp), so that the robot’s end-effector does not collide with the
obstacle. Furthermore, the collision avoidance of the robot’s
links can be encoded in STL by modeling the links, albeit
at the expense of more complex computation.

VIII. CONCLUSION AND FUTURE WORK

We formulated the human-robot handover scenario us-
ing STL formulae and provided candidate specifications of
eight different robot behaviors for bi-directional human-robot
handovers. We demonstrated the feasibility of our approach
via simulations, including using a public dataset of human-
human handovers. To the best of our knowledge, this is the
first work to use the automated synthesis of robot controllers
from formal specifications for human-robot handovers. Our
approach allows the user to specify the robot’s behavior in
terms of timing of different stages of the object handover.
The controller is synthesized online in a receding horizon
manner, with the human’s motion being predicted at each
time-step using a linear dynamical system model.

To demonstrate that our approach is practically feasible,
we are currently implementing it on a collaborative robot
arm. We will conduct human-participant experiments with
naı̈ve users to study the quantitative and qualitative outcomes
of human-robot handovers with our approach and compare
them with other state-of-the-art approaches from the litera-
ture. We are also extending our framework to include gaze
and other gestures, which have been found to affect handover
timing and quality.



(a) Reach-Time = 1s

(b) Reach-Time = 2s

(c) Reach-Time = 3s

Fig. 4: Representative simulations of different reach-time values (reactive,
towards human strategy). A timing constraint of t1 = 1s is infeasible given
the safety cap on the robot’s velocity. Increasing the constraint to t1 = 2s
allows the robot end-effector’s trajectory to converge to the human hand’s
trajectory within the specified time limit. Increasing the reach time constraint
from t1 = 2s to t1 = 3s increases the time taken by the robot end-effector’s
trajectory to converge to the human hand’s trajectory and thus increases
human idle time. This increase is less than 1s, because the timing parameter
is only an upper bound.
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