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Evaluating Guided Policy Search for
Human-Robot Handovers
Alap Kshirsagar , Guy Hoffman , and Armin Biess

Abstract—We evaluate the potential of Guided Policy Search
(GPS), a model-based reinforcement learning (RL) method, to train
a robot controller for human-robot object handovers. Handovers
are a key competency for collaborative robots and GPS could be a
promising approach for this task, as it is data efficient and does
not require prior knowledge of the robot and environment dy-
namics. However, existing uses of GPS did not consider important
aspects of human-robot handovers, namely large spatial variations
in reach locations, moving targets, and generalizing over mass
changes induced by the object being handed over. In this work, we
formulate the reach phase of handovers as an RL problem and then
train a collaborative robot arm in a simulation environment. Our
results indicate that GPS is limited in the spatial generalizability
over variations in the target location, but that this issue can be
mitigated with the addition of local controllers trained over target
locations in the high error regions. Moreover, learned policies
generalize well over a large range of end-effector masses. Moving
targets can be reached with comparable errors using a global policy
trained on static targets, but this results in inefficient, high-torque,
trajectories. Training on moving targets improves trajectories, but
results in worse worst-case performance. Initial results suggest
that lower-dimensional state representations are beneficial for GPS
performance in handovers.

Index Terms—Manipulation planning, physical human-robot
interaction, reinforcement learning.

I. INTRODUCTION

IN THIS work, we develop and evaluate a robot controller
that uses Guided Policy Search (GPS) to perform reaching

motions for object handovers. Handovers are a core competency
for collaborative and assistive robots working with humans, for
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example, in collaborative assembly, surgical assistance, house-
hold chores and elder care. A handover consists of three phases:
reach, transfer and retreat [1]. We focus on the reach phase of
a handover, in which both actors extend their arms towards the
handover location. While researchers have proposed a number of
offline [2]–[7] and online [1], [8]–[23] controllers for the reach
phase, these methods rely on accurate models of the robot’s
dynamics and/or of the human kinematics. Recently researchers
have suggested GPS [24]–[26], a reinforcement learning (RL)
algorithm, with promising success in a number of autonomous
tasks [27]–[29]. Some variants of GPS, like the one we use in
this work [29], do not require prior knowledge of the robot or
environment dynamics.

While GPS has been demonstrated on a number of au-
tonomous manipulation and navigation tasks, it has not been
tested in a physical human-robot collaborative task such as a
handover. Examples of successfully learnt manipulation tasks
with GPS include stacking small blocks, assembling toys, in-
serting rings on wooden pegs, screwing bottle caps, inserting
shapes into sorting cubes and opening doors [27]–[29]. Common
to all of these GPS applications are fixed targets, small variations
in the test locations, and fixed robot dynamics. The task of
object handovers has important characteristics that deviate from
previous work: First, it requires a robot to plan its motion towards
a moving target, i.e., the human’s hand. Second, given the
unpredictability of human behavior, the training and test target
trajectories could be very different. Finally, due to different
objects that are handed over, the robot dynamics are not fixed.

In this work, we evaluate GPS for handovers, and tackle pre-
viously unanswered questions such as: How does GPS perform
if the training and test conditions are spatially far apart? How
does GPS perform when reaching for an unpredictable moving
target? How does GPS perform in the case of changes in the
robot’s end-effector mass?

To do so, we formulate the reach phase of a handover as an
RL problem and investigate the performance of GPS for the
scenarios listed above. We find that the global policy learnt with
GPS does not perform well for target test locations spatially
too distant from the target training locations but that this can
be addressed with the addition of local controllers which are
trained over target locations in the high error regions. In that
case, the learnt global policy can also handle moving targets with
comparable errors, albeit with highly inefficient trajectories.
Training on moving targets improves the trajectories, but results
in higher worst-case errors. Finally, we find that a learnt global
policy adapts well to changes in robot dynamics due to changes
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in the robot’s end-effector mass. In an exploratory evaluation of
different state representations, we find that a low dimensional
state representation may be more suitable for GPS-trained han-
dover controllers.

There are important features of human-robot handovers that
we do not address in this work, such as human adaptation to
the robot’s movement, human safety, or motion legibility. This
work also does not use human participants, but uses simulation to
study aspects of handovers that have not been addressed in prior
work. The main contribution of this work is empirical (evaluating
GPS in unexplored scenarios) and model-related (comparing
state representations). Our results provide new insights into the
advantages and limitations of GPS, and lay the foundation for de-
signing appropriate training regimens for learning human-robot
interaction (HRI) controllers with GPS.

II. RELATED WORK

In this section, we provide a brief review of existing con-
trollers for the reach phase of human-robot handovers, and prior
work related to GPS.

A. Human-Robot Handover Reach Phase Controllers

Several controllers have been proposed for the reach phase
of human-robot handovers, operating either offline or online.
Offline controllers [2]–[7] compute the robot’s motion plan
before the start of the reach phase and do not update it during
the reach phase. Offline controllers require the human to adapt
to the robot’s motion and hence are not desirable, especially in
situations where the human is distracted or occupied with other
tasks. Our proposed controller is an online controller which
constantly updates the robot’s motion plan during the reach
phase and takes into account the observed behavior of the human.

The simplest online controllers for the reach phase of han-
dovers take a visual servoing approach, i.e., driving the robot
towards the human hand [8]–[10]. This controller updates
the robot’s motion plan continuously by generating velocities
proportional to the error between the human hand’s position
and the robot gripper’s position. Some researchers have used
other velocity profiles or motion planners to drive the robot
towards the human hand or the predicted handover location.
For example, Pan et al. [13] used Bézier curves to generate
smooth minimum-jerk trajectories; Scimmi et al. [14] used a
smooth predefined velocity profile; Kshirsagar et al. [1] used
automated synthesis from formal specifications. Similar to our
controller, these controllers do not produce a human-like motion.
Some online controllers have used movement primitives such
as Dynamic Movement Primitives (DMPs) [15], Probabilistic
Movement Primitives (ProMPs) [16] and triadic interaction
meshes (IMs) [17] to imitate the demonstrated human reaching
motions in handovers. Other approaches have used dynamical
systems [20], look-up tables [21], or neural networks [22], [23]
to encode the demonstrations and generate robot motion in the
reach phase. Some researchers have used reinforcement learning
techniques to learn online controllers for the reach phase from
human feedback [18], [19].

Existing reach phase controllers require known robot dynam-
ics, which may be difficult to obtain for custom built robots and
for commercial robots with proprietary claims. Robot dynamics
may also change due to the varied and possibly unknown mass
of the object to be handed over. System identification techniques
can be used to build dynamics models but require large training
data especially for building global models. In contrast, GPS is
data efficient as it builds local models of the system and uses a
combination of locally optimal controllers and a global policy
trained using the local controllers via supervised learning.

B. Guided Policy Search

Initial variants of the GPS algorithm [24]–[26] required
known dynamics of the system. For optimizing trajectories of
systems with unknown dynamics, Levine and Abbeel [27] ex-
tended the constrained GPS algorithm of Levine and Koltun [26]
with iterative refitting of locally linear dynamics models. They
showed that this method requires less samples than model-free
methods and does not need to learn global models, which are
difficult to learn for complex systems. They evaluated their
method on simulated robotic manipulation tasks such as peg
insertion, and locomotion tasks such as swimming and walking.
Levine et al. [28] extended the evaluation of the algorithm
through a variety of experiments on a real robotic platform for
tasks such as stacking lego blocks, assembling toys, inserting a
shoe tree, inserting rings on wooden pegs and screwing bottle
caps.

Levine et al. [29] proposed an end-to-end approach to learn
policies that map raw image observations directly to robot joint
torques. They used the constrained GPS algorithm and formu-
lated it as an instance of Bregman-Alternating Direction Method
of Multipliers (BADMM). They tested this method on tasks
that require close coordination between vision and control such
as inserting shapes into a sorting cube, screwing a bottle cap,
placing hanger on a bar and inserting hammer underneath a nail.
Zhang et al. [30] augmented the original GPS algorithm with a
model predictive control (MPC) scheme to generate training data
without catastrophic failures. They showed that this algorithm
was comparable to the original GPS algorithm in the absence
of model errors and outperformed the GPS algorithm when
model errors were introduced. Chebotar et al. [31] augmented
GPS with a model-free local optimizer based on path integral
(PI) stochastic optimal control, instead of iLQR, to generate
local controllers. Also, unlike GPS algorithms of Levine and
Koltun, which used the local controllers to generate training
data, Chebotar et al. generated training samples by running the
global policy on new sets of task instances in each iteration.
This method performed better than iLQR-based GPS on tasks
with intermittent and variable contacts and discontinuous cost
functions.

While researchers have tested GPS algorithms on a variety
of locomotion and autonomous manipulation tasks, to the best
of our knowledge, there is no work that evaluated GPS for
tasks with large variations in target locations, moving targets
and changes in robot dynamics, as are typical in HRI scenarios
such as handovers. Also, none of the prior works on GPS
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have evaluated the sensitivity of GPS to the system’s state-
space representation. We seek to address this gap in this work
by evaluating a robot controller that uses GPS for the reach
phase of human-robot object handovers. A large body of work
has studied transfer learning [32] and domain adaptation [33]
where the training and testing conditions belong to different
tasks/distributions. However, in our work the training and testing
conditions belong to the same task and are drawn from the same
distribution. Therefore, our problem statement is different from
transfer learning or domain adaptation.

III. POLICY SEARCH FORMULATION OF HANDOVERS

We start by briefly describing the GPS algorithm and then
formalize the reach phase of a handover task as a reinforcement
learning problem. To do so, we have to specify the state/action
space, as well as a cost/reward function in the form of a differ-
entiable function over the system states and control inputs.

A. Guided Policy Search Algorithm

The goal of policy search algorithms is to find a
policy πθ(ut|xt) that minimizes the expected cost
Eπθ

[
∑T

t=1 l(xt,ut)] of executing a task. Here θ denotes
the policy parameters, for example weights of a neural network,
ut is the control input at time t, xt is the state of the system
at time t, and l(xt,ut) is the cost associated with the task at
time t. Directly solving this minimization problem through
reinforcement learning requires large amounts of training
data and is susceptible to local minima. Guided policy search
algorithms overcome these issues through the use of guiding
distributions or “local” controllers pi(ut|xt) to train the
“global” policy πθ(ut|xt) through supervised learning. The
local controllers can be trained via trajectory optimization
methods such as iLQR. Thus GPS poses the expected cost
minimization problem as a constrained problem given by

min
p,θ

Ep

[
T∑

t=1

l(xt,ut)

]
s.t. p(ut|xt) = πθ(ut|xt) ∀t, (1)

where p(ut|xt) is a mixture of guiding distribu-
tions pi(ut|xt). The expectation is taken with respect
to p(τ) = p(x1)

∏T
t=1 p(xt+1|xt,ut)p(ut|xt), where

τ = {x1,u1, . . .,xT ,uT } is a trajectory and p(xt+1|xt,ut) is
the dynamics model of the system. As described in Section II-B,
some variants of GPS algorithms require known dynamics
models while others iteratively learn locally linear dynamics
models from the training data.

In this work, we use the Bregman-Alternating Direction
Method of Multipliers (BADMM) GPS algorithm proposed
by Levine et al. [29] which does not require prior knowledge
of the robot dynamics. In this algorithm, the local controllers
pi(ut|xt) and the dynamics pi(xt+1|xt,ut), ∀i ∈ [1, 2, . . ., N ]
where N is the number of local controllers, are represented with
time-varying Linear Gaussians:

pi(ut|xt) = N (Kt,ixt,i + kt,i,Ct,i), (2)

pi(xt+1|xt,ut) = N (fxt,ixt + fut,iut + fct,i,Ft,i). (3)

The linear Gaussian controllers and dynamics can be effi-
ciently learned with a small number of samples. A different set
of controller and dynamics parameters are fitted for each training
target trajectory (in our case: the human’s reaching motion). But
a single global policy is supervised by all of the local controllers,
making it generalizable to different test target trajectories.

Levine et al. [29] suggest modifying the constraint in (1) by
multiplying with p(xt) and applying it to expected action, to
make the constraint tractable:

min
p,θ

Ep

[
T∑

t=1

l(xt,ut)

]

s.t. Ep(xt,ut)[ut] = Ep(xt)πθ(ut|xt)[ut] ∀t. (4)

The GPS algorithm alternates between generating optimal
trajectories for each local controller with iLQR and training a
global policy supervised by the local controllers. The global
policy is also used to improve the local controllers, such that
the local controllers stay close to the global policy. GPS thus
alternates minimization of θ and p as follows:

θ ← argmin
θ

T∑
t=1

Ep(xt)πθ(ut|xt)[u
T
t λμt]

+ νtEp(xt)[DKL(p(ut|xt)||πθ(ut|xt))], (5)

p ← argmin
p

T∑
t=1

Ep(xt,ut)[l(xt,ut)− uT
t λμt]

+ νtEp(xt)[DKL(πθ(ut|xt)||p(ut|xt))], (6)

λμt ← λμt + ανt(Ep(xt)πθ(ut|xt)[ut]

− Ep(xt)p(ut|xt)[ut]), (7)

where λμt is the Lagrange multiplier on the expected action at
time t, νt is the weight of the Kullback-Leibler divergence term
that serves to keep p(ut|xt) close to πθ(ut|xt). For a detailed
description of the GPS algorithm, see [29].

B. System State Representation

Any reinforcement learning method is sensitive to its state
representation, and in this work, we explored three alternatives
for the system state xt. The first one is the FULL state, which
might be available in a laboratory setup supported by a motion
tracking system. In this representation, the state consists of the
robot joint angles θr, the robot joint velocities θ̇r, the human
arm joint angles θh, the human arm joint velocities θ̇h, the
positions and velocities of three points on the object (po, ṗo),
the human hand (ph, ṗh) and the robot gripper (pr, ṗr), and the
robot gripper’s width gr ∈ [0, gopen] (0 for fully closed, gopen
for fully open). The positions are measured in an inertial frame
fixed to the base of the robot. A state is thus given by

xt = [θr, θ̇r, θh, θ̇h,po,ph,pr, ṗo, ṗh, ṗr, gr]t. (8)

As the human’s joint angles are difficult to measure for a
robot outside a laboratory, we also explore a REDUCED state
representation, which excludes the human arm joint angles and
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joint velocities:

xt = [θr, θ̇r,po,ph,pr, ṗo, ṗh, ṗr, gr]t. (9)

Given the possible large variation in human position, we also
explore a third option, which includes the human hand and the
object poses in the robot end-effector frame instead of an inertial
frame fixed to the base of the robot. This RELATIVE represen-
tation corresponds to the configuration in which a camera is
attached to the robot end-effector:

xt = [θr, θ̇r,p
r
o,p

r
h, ṗ

r
o, ṗ

r
h, gr]t. (10)

In all of the three alternatives, the robot’s control input
ut = [τ , fg]t consists of the robot joint torques τ and the force
applied by the gripper’s actuator fg , constrained by umin ≤
ut ≤ umax.

We use the REDUCED state representation in the majority of
the results below. We conclude with an exploratory comparison
with the two other state representations.

We use torques as control inputs instead of velocities or
positions to take into account the dynamics of the robot. This
eliminates the need to tune low-level position/velocity con-
trollers. Also, position or velocity controllers might exert large
impact forces on the human while trying to move the robot with
commanded position or velocity. Therefore torque controllers
are preferred over position or velocity controllers for human-safe
robot behavior.

C. Cost Function

In the reach phase of handovers, the robot should move its
gripper towards the human hand. We represent this behavior
with a cost function given by

creach = ||pr − ph||2 + ln(||pr − ph||2 + αreach). (11)

The first term of this cost function penalizes robot positions far
away from the human hand, while the second term encourages
precise placement due to its concave shape, as described in [28].
Thus this cost function encourages the robot to reach towards
the human hand quickly and precisely. The parameter αreach

determines the penalty in the vicinity of the target. Similar to
[28], we set αreach = 1e− 5 in the evaluations described in the
next section.

IV. EVALUATION

We evaluate the performance of the global policy learnt with
GPS for large variations in target locations, moving targets, and
changes in robot dynamics. To do so, we train a collaborative
robot to perform handovers over repeated trials in a simulation
environment with different training regimens, and test on differ-
ent target trajectories. We measure the performance of the global
policy in terms of the error between the end-effector’s position
and the human hand’s position.

A. Implementation

We build upon the BADMM-GPS implementation by Finn et
al. [34]. The collaborative robot in the handover task is simulated

Fig. 1. MuJoCo simulation environment. We train a Panda robot arm (left) to
perform handover reaching motions by simulating the reach phase with another
robot (right), standing in for the human.

in MuJoCo [35] (Multi-Joint dynamics with Contact). Fig. 1
shows the MuJoCo simulation environment built for this study.
The robot on the left is a Franka-Emika Panda with 7 degrees-
of-freedom (DoFs), equipped with a two fingered gripper. In the
remaining text we call this robot the “learner”. The environment
also includes a pseudo-robot arm with two DoFs and a mass
rigidly attached to its end-effector. In the remaining text we call
this robot the “trainer” or the “tester” depending on whether it is
used to train the global policy or to test the learnt global policy.
This robot stands in for the human and “teaches” the learner to
perform handover reaching motions in simulation.

B. Simulation Results

The first research question that we investigate is the spatial
generalizability of the learnt global policy, i.e., how does the
global policy perform for large spatial differences between
training and test locations. To answer this question, we test
the learnt global policy at different locations of a static tester
on a semi-hemispherical shell around the learner robot, which
represents the workspace of the robot. For each angle in 5 deg
increments, we test on a grid of 11× 11 targets, resulting in
2299 test locations. We initially train the global policy with
eight local controllers for target locations at the corners of the
workspace. Each trial runs for 2 seconds, both the learner and the
trainer/tester start moving at the same time, and the global policy
is improved over 12 trials. The test performance is measured as
the mean error between the learner’s gripper position and the
tester’s hand position over the last 0.5 seconds of each trial.

Fig. 2(a) shows the performance of the learnt global policy,
The training locations are marked with black squares and the
learner’s gripper’s initial position with a black circle. Fig. 3 (left)
shows the mean, range, and standard deviation of the error. The
mean testing error (128 mm) is more than 6 times the mean
training error (20 mm). The error increases up to 241 mm as the
spatial distance between the training and the testing target loca-
tions increases. This issue can be somewhat addressed by adding
four additional local controllers trained with target locations in
the plane dividing the workspace (Fig. 2(b)). For a global policy
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Fig. 2. Global policy evaluation for different types of trainers and testers. In the ‘static’ case, the trainer/tester stays in a fixed configuration. In the ‘moving’
case, the trainer/tester moves with a human-like trajectory and reaches the locations given by colored dots. Thus each point corresponds to the final position of
the tester’s gripper in a trial, and the black square markers correspond to the training target locations. The black round marker corresponds to the learner robot’s
gripper’s starting position. Error between the learner’s gripper position and the tester’s gripper position is averaged over the last 0.5 seconds of each trial. We find
that: 1) Error increases as the target location is shifted away from the training locations (all figures). 2) Increasing the number of training locations reduces the
error (left column vs right column). 3) Error is higher if the trainer is static and the tester is moving (first row vs second row). 4) Error is more sensitive to location
and performs worse in the worst case if the global policy is trained on a moving target (bottom row).
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Fig. 3. Distributions of training and testing performance for each target
scenario. Each point is the mean error between the learner’s gripper position
and the tester’s hand position over the last 0.5 seconds of a trial. Error bars show
one standard deviation around the mean of each distribution.

trained with these 12 local controllers, the mean and standard
deviation of the testing error is reduced to 69± 32mm.

Next, we investigate how GPS performs when the target is
moving. First, we used the same global policy shown in Fig. 2(a)
(static training) but instead of a static tester we simulate the tester
to execute a human-like trajectory in joint space [36], given by

θh,i =
a(θf,i − θ0,i)

b+ e
−ct
tf

+ θ0,i ∀i ∈ 1, 2, (12)

where a = 9.05e−4, b = 8.908e−4 and c = 12.87 are empirical
coefficients determined by Rasch et al. [36] from human arm
motion data. θ0,i and θf,i are the initial and final values of
the ith joint angle, respectively, tf is the movement duration,
while θh,1 and θh,2 correspond to the shoulder and elbow joints,
respectively. We set θ0,1 = θ0,2 = 0, tf = 1, and use inverse
kinematics to compute the final values of θh,1, θh,2 for a given
Cartesian position of the tester’s gripper. We vary the tester’s
trajectories such that its gripper’s final position is on the same
semi-hemispherical shell around the learner robot as before. The
global policy’s performance is again measured as the mean error
between the learner’s gripper position and the tester’s gripper
position over the last 0.5˜s of each trial. Since we set tf = 1 in
(12), this error is calculated after the tester has reached the final
position.

Fig. 2(c) shows the results for the global policy trained with
8 local controllers; Fig. 3 (middle) shows the mean, range, and
standard deviation of the error. The performance is worse with a
mean testing error of 165 mm for a moving target, 28.9% higher
than the mean testing error for a static target, but the range of
error is comparable. Few target locations result in low errors. For
the global policy trained with 12 local controllers (Fig. 2(d)), the
mean testing error is 99 mm for a moving target, 43.5% higher
than the mean testing error for a static target. The range, again,
is comparable, with more target locations, as compared to the
global policy trained with 8 local controllers, having low errors.

Fig. 4. Mean error and torque for different robot end-effector masses
(0.5–16 kg). The vertical line represents the baseline mass of the robot end-
effector used during training (2 kg). Each error marker corresponds to the mean
error of all testing locations on a semi-hemispherical shell around the robot as
shown in Fig. 2. Torque markers show the mean of the norm of torques applied
by the robot, averaged over the same testing locations. The error remains fairly
constant over a wide range of the robot end-effector mass (up to 4 kg), and
the global policy produces total torques proportional to the changes in the robot
mass. Torques are significantly higher for the ‘static train, moving test’ scenario,
indicating highly inefficient trajectories.

That said, the trajectories generated by these “Static
Trainer, Moving Tester” trials are highly inefficient. The video
attachment shows examples of the resulting circumvent reach
trajectories, and Fig. 4 (center line) shows that the mean torque
i.e. the L2 norm of the robot’s joint torques averaged over all
test points and time-steps, is almost double over the trajectory.

A possible way to address this issue is to train the controller
with a moving target, also executing a human-like trajectory in
the joint space, as described in Eq 12. Fig. 2(a) and Fig. 2(f) show
the performance of the global policy for various final positions
of the tester’s gripper, defined as in previous trials. Fig. 3 (right)
shows error distributions.

For the global policy trained with a moving trainer and 8
local controllers (Fig. 2(e)), the mean testing error is 157 mm,
and thus does not provide a meaningful improvement. Moreover,
the variance over target location is high, and the worst-case error
is 473 mm, 87.7% higher than the maximum error for the static
trainer condition (252 mm). In fact, the GPS process does not
converge to a low training error, which is more than 3x that of the
static training results. For the global policy trained with a moving
trainer and 12 local controllers (Fig. 2(f)), the mean testing error
is reduced to 82 mm, 17.2% lower than the mean testing error for
the static trainer condition. But the variance of the performance
remains high, with a 461 mm worst case performance. That said,
an inspection of the generated trajectories and torques shows that
this approach results in more efficient trajectories and torques
similar to those achieved with static targets.

The third research question that we address is how the global
policy performs under changes in robot end-effector’s mass.
To investigate this question, we train the robot with a baseline
end-effector mass of 2 kg and evaluate the performance of the
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Fig. 5. Distributions of testing performance for different state representations
described in Section III-B. In each case the global policy is trained with 8 local
controllers. The number in parentheses represents the number of state variables
in each representation. Each point is the mean error between the learner’s gripper
position and the tester’s hand position over the last 0.5 seconds of a trial. Error
bars show one standard deviation around the mean of each distribution.

global policy for different robot end-effector masses, ranging
from ∼0.5 kg to ∼16 kg. Fig. 4 shows the mean error between
the learner’s gripper position and the tester’s gripper position for
different robot end-effector masses. We find that the mean error
across the same testing locations as shown in Fig. 2 remains
largely unaffected between 0.5–4 kg, but the error increases if
the end-effector’s mass is increased beyond this limit. Fig. 4 also
shows means of the norm of torques applied by the seven joints
of the robot for different robot masses. We find that the mean
increases with increase in the robot end-effector’s mass, except
when the robot is trained on static targets but tested on moving
targets, where the torques are always high. We also investigated
the effect of changing the total mass of the robot, and found that
for a baseline mass of 18.5 kg the error remained fairly constant
up to 100 kg.

In section III-B, we proposed different possible state represen-
tations. Fig. 5 shows the performance of the global policy trained
with 8 local controllers, across all three state models. For policies
trained on static targets, the REDUCED state representation has
the lowest variance (best generalization), but this does not hold
for policies trained on moving targets. Overall, a global policy
trained with the lowest-dimensional RELATIVE state represen-
tation (54 dimensions) has a better average performance than the
other state representations. This suggests that lower-dimensional
state models may be more appropriate for GPS-trained handover
controllers.

V. CONCLUSION

We evaluate the feasibility of GPS as a learning method for
human-robot handovers. We use a variant of the GPS algorithm
that does not require prior knowledge of the robot dynamics, and
instead, learns locally linear dynamics models from the training
data [29]. Previously, GPS was used for tasks in which the
environment was static and the variations in target locations were

small. To successfully complete a handover, however, the robot
must cope with a dynamic environment including unpredictable
human motion in a wide range of target locations holding objects
of different mass. Our study thus contributes to the design of
control policies for human-robot handover tasks by providing a
detailed analysis of GPS in terms of three of these requirements:
moving targets, large variations in target location, and a changing
end-effector mass.

When evaluating static reach targets only, we find that the per-
formance of the GPS-learned global policy does not generalize
well to spatial variations in target locations, and its performance
worsens significantly (Fig. 2(a)). The performance of the global
policy can be improved by training it with more local controllers
(Fig. 2(a) vs Fig. 2(b)). The additional local controllers should
be trained with target locations distributed in the regions with
high testing errors.

When evaluating the global policy with a moving target
which was simulated to mimic human reaching motions, the
performance of the global policy decreases on average, but can
still achieve reasonable error performance, especially in areas
near the training locations (Fig. 2(a) vs Fig. 2(c)). Similar to
the static case, the generalizability of the performance of the
global policy can be improved by training it with more local
controllers (Fig. 2(e) vs Fig. 2(f)). However, a global policy
trained with static targets results in highly inefficient trajectories
for moving targets, which are not only high-torque, but would
be confusing to a human confronted with them. The obvious
solution of training the global policy with moving targets is a
double-edged sword. It is successful in reducing the mean error
and results in more legible and low-torque efficient trajectories,
but at the cost of a more high-variance (unreliable) global policy
with significantly larger worst-case errors. Further research is
required to strike the best balance of trajectory shape, efficiency,
and reach error.

In a handover task, the robot end-effector’s mass could be
different in the training and testing scenarios due to different
objects being handed over. We found that the trained global pol-
icy adapts well to a range of changes in the robot end-effector’s
mass. The robot is able to reach the target locations with similar
accuracy even with large variations in the end-effector’s mass,
but only up to a limit as shown in Fig. 4. This adaptability
could be because our cost function (11) results in a global policy
which is similar to a proportional visual servoing controller. This
controllers adapts to changes in robot mass by applying control
inputs proportional to the error between the desired position
and the current position. Another possible explanation for the
invariance of the error under changes of robot mass could be
that changes in the robot’s mass do not have a large effect on the
robot’s trajectory in state-space, and hence, on the performance
of the global policy. Contrarily, shifting the target location in the
Cartesian space away from the training locations also shifts the
robot’s trajectory away from the explored region of the robot’s
state-space, and thus worsens the global policy’s performance.

In contrast to prior works on GPS, we also present an ex-
ploratory study of the effect of different state representations on
the performance of GPS. We found that removing the human’s
joint angles and velocities from the state representation, and
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expressing the human hand’s position and velocity in a reference
frame attached to the robot gripper, improved the performance
of the trained global policy. This suggests that a low dimensional
state-space would be more suitable for GPS, even though it
contains less information about the task dynamics.

This work presents initial steps toward using GPS for human-
robot handovers. We did not consider other important aspects of
handovers, such as the human adaptation to the robot’s motion,
their proactivity, the legibility of the robot’s movement, and so
forth. Our studies were also conducted in simulation with a robot
arm standing in for the human, generating the variability and
movement of the handover target location. While this allows
for highly controlled empirical conditions, their application in
a real-world context is limited. In future work, we plan to test
GPS on a physical robot for object handovers with human partic-
ipants. Still, the current study contributes to our understanding
of the possibilities and limits of GPS with respect to important
aspects of human-robot collaboration.
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