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We present a digital-physical system to support human-computer collabora-
tive design. The system consists of a sensor-instrumented “sand table” func-
tioning as a tangible space for exploring early-stage design decisions. Using 
our system, human designers generate physical representations of design so-
lutions, while monitoring a visualization of the solutions' objective space. 
Concurrently, an AI system uses the vicinity of the human's exploration 
point to continuously seed its search and suggest design alternatives. We 
present an experimental study comparing this side-by-side design space ex-
ploration to human-only design exploration and to AI-only optimization. 
We find that side-by-side collaboration of a human and computer signifi-
cantly improves design outcomes and offers benefits in terms of user expe-
rience. However, side-by-side human-computer design also leads to more 
narrow design space exploration and to less diverse solutions when com-
pared to both human-only and computer-only search. This has important 
implications for future human-computer collaborative design systems. 

Introduction 

A useful formulation of early-stage design is viewing it as an exploration of 
the space of possible designs [5]. This can be formalized as a search through 
the solution space, proposing and evaluating solutions in pursuit of some 
possible world [44]. This is a particularly tractable model of design in sym-
bolically represented state spaces [16]. Given that search is also a core ca-
pacity of Artificial Intelligence (AI) [33] and [48], researchers were  
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Fig 1. Conceptual schematic of side-by-side human-computer collaborative design 
using a tangible interface. The human designer and AI search algorithm explore 
different designs simultaneously and affect each other’s position in the solution 
space. The human generates tangible physical representations of design solutions, 
while monitoring a visualization of the objective space. The AI search uses the hu-
man’s exploration to continuously seed its search and suggest design alternatives. 

able to develop intelligent tools to aid in design problems through a variety 
of computational search methods [45] and [31]. In most cases of design-as-
search, both when a human designer and when a computer design tool is 
employed, the process is modeled as one of an individual designer [18]. 
Some researchers, however, have suggested that exploring a design space 
can be more powerful when designers work with others. Fischer calls design 
social by nature [15]. Indeed, collaborative design can transcend the capac-
ity of the individual, leveraging specialized expertise across “symmetries of 
ignorance” to enable designs that address complex problems and spaces [2]. 
The usefulness of collaboration in design has engendered a strong interest 
in systems and tools that support collaborative design, precipitating the field 
of computer-supported collaborative design (CSCD) [42]. 

Beyond CSCD, the potential of design as a collaborative activity also 
suggests human-computer collaborative design, which is the focus of this 
paper. While many approaches to human-computer collaborative design ei-
ther pose agents as support tools for humans [31], [37], and [14] or position 
humans as inputs to a computational process [13], [7], [26], and [4], research 
in human-computer teamwork suggests merit in a more balanced partnership 
between human and computer designers, modeling the interaction as a true 
collaboration [17].  

In this paper, we present a system to support a side-by-side model of 
human-computer collaborative design using a digital-tangible “sand table” 
interface in combination with an AI search agent and a visualization of the 
design problem’s objective space (Fig. 1). In our model, the user searches 
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the design space using a physical one-to-one mapping of the solution space, 
while the AI search algorithm uses the user’s designs as seeds to search the 
design space alongside the human designer, and subsequently presents the 
human with a visualization of the search process.  

Our motivation to use a tangible user interface (TUI) stems from the fact 
that tangible and tabletop interfaces have been found to be particularly well-
suited for collaborative exploration of design spaces. On its own, a TUI af-
fords designers the ability to employ senses and manipulations they are fa-
miliar with in the physical world to interact with virtual models [21]. TUIs 
have been found to promote learning [6] and [47], and interaction with phys-
ical media to drive innovative exploration in design spaces [28], [46], and 
[32]. Tangible interfaces can also impact the nature of collaborative design 
processes and hence outcomes, e.g. the effect of a TUI on spatial cognition 
in groups can increase “problem-finding”, leading to higher creativity [28].  

TUI’s have been extensively evaluated vis-a-vis graphical or screen-
based interfaces [52], [49], and [35], including with respect to design tasks 
[27], so this is not the focus of this work. We instead set out to use the TUI 
as a collaborative platform for evaluating side-by-side exploration with an 
agent in a design space. 

In this vein, we present an experimental study that compares side-by-side 
human-computer collaborative design with two baseline conditions: human-
only design search, and human observation of computer-only search. De-
pendent variables include the quality of the generated designs and user ex-
perience. The design problem we use to illustrate our approach is the EOSS 
Sensor-Orbit Design Problem, a real-world space mission design problem 
with multiple competing objectives.  

The core contributions of this work are: (a) a digital-physical system that 
supports side-by-side human-computer collaborative exploration of a design 
space; (b) support for our hypothesis that this system results in better designs 
than either the human or the computer working alone; (c) insights into the 
user-experience benefits of side-by-side human-computer collaborative de-
sign; and (d) limitations and design implications related to the effects of 
side-by-side exploration on the coverage and diversity of the design solu-
tions explored. 

The EOSS Sensor-Orbit Design Problem 

Designing sensor configurations for Earth-observing satellite systems 
(EOSS) is a real-world multi-objective design problem in Aerospace Engi-
neering. The design of such systems has become increasingly difficult and 
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important to space organizations planning satellite missions due to increas-
ingly stringent mission requirements without the necessary budget increases 
to fully meet the increased demands [40].  

Specifically, we engage the problem of deploying sensors on a climate-
monitoring satellite constellation to optimally satisfy 371 measurement re-
quirements (e.g. air temperature, cloud cover, atmospheric chemistry) de-
fined by the World Meteorological Organization (www.wmo-sat.info/oscar) 
at minimal cost [19]. A design in this space consists of assigning up to 12 
different kinds of sensors to satellites in five different orbits around the 
Earth. Each sensor has different capabilities that address different measure-
ment requirements to varying degrees, dependent on the orbit in which it is 
deployed. The cost of deploying various sensors is also highly orbit-depend-
ent, insofar as it affects the choice of launch vehicle and supporting subsys-
tems, among other considerations. The cost and scientific benefit of a spe-
cific sensor configuration is further complicated by synergistic or 
deleterious effects that sensors deployed together can exert on each other. 

Research Questions 

The described system and study are elements of an ongoing project to both 
understand and realize novel forms of human-computer collaboration in 
physical design spaces. In this particular work, we explore the following 
research questions:  
• RQ1: How do design solutions produced by a human and design agent 
working side-by-side compare to either human-only or algorithm-only gen-
erated solutions?  
• RQ2: How does collaborating side-by-side with an intelligent agent affect 
user experience while exploring a design space?  

 
 

 
Fig 2. A user working collaboratively with an AI design agent using the presented 
digital-tangible sand table interface. 
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The Collaborative Design Sand Table Tangible User Interface 

 
Fig 3. This figure illustrates the tabletop (top right) and visualization interfaces. As 
users arrange sensor blocks into orbits, the system evaluates and plots the corre-
sponding total cost and science benefit of the design on the scatterplot. The current 
design (in this case instrument H in Orbit 1, I in Orbit 2, etc.) is plotted in red, the 
next most recent in pink. All other user-generated designs are plotted in a purple 
that fades over time. When a design agent generates a configuration, the system 
plots the corresponding output in gray. Finally, users can select an outcome to pro-
ject its configuration on the table (in this case, instruments B,E,F in Orbit 1, etc.). 

Overview 

Inspired by the affordances of TUIs for design and collaboration, we devel-
oped a tangible sand table interface to study collaborative design (Fig. 2). 

Our mixed-reality system consists of an interactive tabletop, a visualiza-
tion, and a set of blocks. The blocks, which are mapped to sensors from the 
design problem, can be placed in regions designated as different orbits on 
the tabletop. The science benefit and cost associated with a particular block 
configuration is calculated using a custom simulation engine [41] and plot-
ted on a visualization above the table. Points on the visualization are color-
coded to indicate recency and whether they are user or agent generated. 
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Fig 4. The sand table projected a workspace onto a surface where a camera tracked 
blocks identified by fiducial markers. As the blocks move between regions on the 
surface, a simulation engine evaluates the associated configurations and plots them 
on a screen. All plotted points in the objective space can be selected and projected 
back onto the tabletop surface. 

The most recent point is plotted in red, the second most recent in pink 
and all other points in various shades of purple such that a dark shade indi-
cated a more recently generated point. All points on the plot are user-se-
lectable; the configuration used to generate any selected point is overlaid on 
the orbits in the tabletop workspace (Fig. 3). 

Independent and Collaborative Design Agents 

We developed two computational design agents to explore the sensor-orbit 
configuration design space, one that operates independently without user 
input, and one that explores the design space collaboratively with a human. 

The “independent” design agent employs a Non-dominated Sorting Ge-
netic Algorithm (NSGA-II) [9] to explore the design space. Evolutionary 
and genetic algorithms have long been associated with design exploration 
and NSGA-II is a conventional approach to exploring both design and multi-
objective optimization spaces [38], [25], [8], [22], [10], and [30].  

Inspired by recent work demonstrating the effect of simple local behavior 
on global outcomes in collaboration [43], the second, “collaborative”, de-
sign agent employs a simplistic version of local search modified to contin-
uously orient its search space around the sensor-orbit configurations being 
explored by the human user. It does so by evaluating random one-block per-
turbations of the current table configuration. This allows the human and de-
sign agent to monitor one another while exploring the space in parallel, with 
the user choosing when to interact and cross search paths (Fig. 1). 
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Technical Specifications 

Our tabletop TUI (Fig. 4) is designed in the tradition of the reacTable [23]. 
An internally housed projector displays images on the 36"x30" tabletop 
where an infrared camera detects objects placed on the surface. Blocks rep-
resenting sensors are fitted with unique fiducial markers and tracked across 
the table surface using the camera and reacTIVision [24]. The NSGA-II 
agent was implemented via the jMetal optimization library [12]. 

Experimental Setup 

We compare our side-by-side approach with two baseline methods, which 
are effectively “subsets” of the proposed approach. We ran a three-condi-
tion, within-user study which asked participants to explore the EOSS design 
problem on their own, by passively observing the NSGA-II agent, and side-
by-side with the collaborative local-search design agent (Fig. 5). 
 Each study lasted roughly an hour and involved three treatment sessions. 
During each session, participants were asked to explore the design space 
through our interface, after which they were given up to thirty seconds to 
construct what they considered the “best” design based on what they had 
learned during exploration. They then completed a questionnaire assessing 
affect and user experience for that round. Following the study, users com-
pleted a post-survey ranking the conditions and reflecting on their choices. 
 In the following we describe the three conditions in detail: 
1. HUMAN-ONLY (HUM): Participants were instructed to explore the de-
sign space through the sand table interface on their own. They were given a 
set of blocks for each instrument and explored using the tabletop and visu-
alization without any assistance from a design agent. As described in the 
system description, participants could click on previously generated designs 
of their own to reflect on their design exploration at any time.  
2. OBSERVE-AGENT (OBS): Participants followed along as the NSGA-II 
design agent explored the space in real-time, with all evaluated configura-
tions plotted on the screen. Again, participants were able to select cost points 
as they were explored to see the corresponding configurations on the tab-
letop, and we allowed them to move around blocks on the table as well, 
although the system did not evaluate any block configurations.  
3. SIDE-BY-SIDE (SBS): Participants worked alongside the local-search 
design agent. As in the HUM condition, the system would evaluate and plot 
evaluations for the block configurations that users placed on the table. The  
local search agent would continuously explore minor variations of the cur-
rent block configuration, which the system would evaluate and visualize for  
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Fig 5. The three design-space search interactions studied: human-only search, hu-
man-observation of agent search (NSGA-II), and side-by-side collaborative search. 

the user as well. For simplicity, we defined the local search neighborhood 
as any configuration at an edit distance of one from the current configuration 
(e.g. add, remove, substitute, or move one instrument in any orbit). Users 
were free to monitor the agent’s search path and adjust their own.  
 The instruments and orbits were randomly remapped between conditions 
with users informed in order to prevent knowledge carryover. The condi-
tions were also randomly and uniformly counterbalanced against ordering 
effects due to fatigue or increased familiarity with the interface or task. 

Hypotheses 

Through our study, we examined the following hypotheses1:  
• H1: Design Quality: The user-agent collaboration (SBS) will generate 
better designs than the user (HUM) or computer alone (OBS) will generate. 
While “better” is often difficult to quantify in a design problem, in this case 
we will evaluate designs relative to a baseline Pareto front generated by a 
conventional genetic algorithm used in this domain—NSGA-II. 
• H2: User Experience: Users have a better experience when collabora-
tively exploring with an agent (SBS) compared to exploring on their own 
(HUM) or following the agent as it explores (OBS). 

                                                        
1 We initially intended to explore a third hypothesis addressing learning out-

comes but were unable to do so due to an error in data collection. 
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Results 

31 subjects (13 female, ages 18–37) participated in our study. To attain a 
more diverse population sample, we recruited participants from a large city 
both through mailing lists and flyers at local universities and via ads on re-
lated social media groups and online bulletin boards. The resulting partici-
pant set came from a varied educational background: six had completed high 
school or a GED, 18 had a bachelor’s degree, and 7 had a master’s degree, 
advanced graduate work, or a PhD. We describe our findings with regard to 
our hypotheses around Design Quality and User Experience.   

Design Quality 

Given the multi-objective nature of the sensor-orbit problem, there is no 
clear single metric to objectively compare designs, a matter complicated by 
the unknown nature of the true Pareto frontier in this real-world problem.  

For each participant and condition, we had a single design solution pro-
duced from a blank slate at the conclusion of the condition to compare 
within-user. Following [20], [50], and [36], we calculated the generational 
distance for each of the designs using their normalized Euclidean distance 
from a reference, empirically-derived Pareto frontier. We constructed this 
reference Pareto frontier from the configurations generated by running 
NSGA-II over 80 iterations with a population size of 200 (Fig. 7). For ref-
erence, the NSGA-II agents in OBS evaluated an average of 267.6 unique 
designs in addition to the initial population of 200 over the course of the 
treatment. User designs were then compared relative to their distance from 
this reference frontier2. 

One-tailed paired-sample t-tests were conducted to evaluate the differ-
ence in quality of designs produced in the SBS condition, compared to each 
of the baseline conditions, HUM and OBS. The SBS condition produced 
significantly closer designs (M=0.114, SD=0.086) in comparison to both 
HUM (M=0.167, SD=0.138, t=−1.920, p=0.032) and OBS (M=0.155, 
SD=0.124, t=−1.827, p=0.039), see Fig. 6(a). These results suggest that 
participants tended to produce better designs after exploring the space with 
the collaborative agent, relative to the reference Pareto-optimal front, sup-
porting H1. 

                                                        
2 In the case that user-generated designs dominated any configurations on the 

reference frontier they were assigned the negation of this distance. Overall, we 
acknowledge that this choice of reference may limit the validity of our finding to a 
small time or a small number of function evaluations 
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Fig 6. Mean design quality and user experience scores across the three conditions. 

User Experience 

Participants’ enjoyment was measured using the Positive and Negative Af-
fect Schedule (PANAS) [51], and user experience via the User Experience 
Questionnaire (UEQ) [29]. Following the study, participants also ranked the 
treatments in order of helpfulness and enjoyment, and provided qualitative 
comparisons of the treatments in terms of helpfulness and enjoyment. 
 Participants displayed stronger positive affect in the SBS condition 
(M=32.85, SD=8.964) compared to HUM (M=30.97, SD=8.677, t=1.455, 
p=0.078), and compared to OBS (M=29.56, SD=8.677, t=3.117, p=0.002). 
One-tailed paired-sample t-tests indicate that only the latter difference is 
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significant, thus only partially supporting H2. No significant difference was 
found in participants’ negative affect after the SBS condition (M=13.13, 
SD=3.784) compared to either HUM (M=13.26, SD=3.838, t=−0.295, 
p=0.385) or OBS (M=13.71, SD=5.172, t=−0.668, p=0.255) (Fig 6(b)). 

Table 1 Participants ranked and reflected on the three treatments at the conclusion 
of the study in terms of helpfulness and enjoyment. The rankings were aggregated 
using an extended Borda system (scores listed next to rank in parentheses). Four 
users did not respond for the enjoyment ranking. 

Treat-
ment 

Helpfulness 
Rank(Score)  
n=31 

Enjoyment 
Rank(Score) 
n=27 

Comments 
 

SBS 1 (81)  1 (70) Positive I liked the fact that I was be-
ing assisted along [...] It felt 
like as if two brains were 
working simultaneously. 

Negative It was distracting to see the 
agent coming up with points 
around me that weren’t al-
ways improvements, and 
this made me feel less pro-
ductive. 

OBS 2 (55) 3 (43) Positive It felt like watching the agent 
exploring by itself allowed 
me to see different trends 
without having to move the 
blocks myself [...] I was ar-
riving at a better solution 
more quickly. 

Negative Observing the agent explor-
ing was dreadful. Way too 
much information, and I 
couldn’t control the vari-
ances in sequences to help 
myself understand the im-
pacts of various instruments. 

HUM 3 (50) 2 (49) Positive Exploring alone makes it 
easier and enjoyable because 
it allows me to follow my 
own logic of exploration. 

Negative Exploring with blocks is too 
inefficient and make me feel 
frustrated. I felt lost without 
help from the computer. 
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 Participants scored the system more positively via aggregate UEQ scores 
after SBS design (M=4.664, SD=4.117) than either HUM (M=3.858, 
SD=4.553, t=1.301, p=0.102) or OBS (M=3.339, SD=4.929, t=1.717, 
p=0.048), although one-tailed paired-sample t-tests indicate that only the 
first was barely significant and effect sizes were small (Fig. 6(c)). We em-
ployed a subset of the full UEQ scale, including the complete scales for at-
tractiveness, efficiency, stimulation, and novelty. Interestingly, users rated 
OBS higher than HUM or SBS in terms of efficiency, but lower than the 
others in terms of attractiveness and the hedonistic scales of stimulation and 
novelty (Fig. 6(d)). 
 Finally, users overall ranked the treatments as (1. SBS, 2. OBS, 3. HUM) 
in terms of helpfulness and (1. SBS, 2. HUM, and 3. OBS) in terms of en-
joyment (Table 1). The rankings were aggregated using an extended Borda 
system [3] whereby each user’s ranking was scored with three points for 
their first choice, two for their second, and one for their third choice. 

 
Fig 7. This figure shows an example of all the evaluated configurations explored by 
a single user during the exploration phase in each study condition. The outputs used 
to generate the reference Pareto front are plotted in the background in gray. 

Discussion 

To summarize, we found that participants produced better designs after ex-
ploring the design space side-by-side with the collaborative design agent 
than after exploring on their own or observing and querying the NSGA-II 
algorithm visualization. Participants exhibited marginally higher affect and 
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user experience when working side-by-side than either of the other modes. 
They also overwhelmingly rated this design method higher than the other 
two. In the following, we discuss implications of our findings, qualitative 
insights from user comments, and possible explanations that could lead to 
tradeoffs when constructing collaborative design agents. 

Qualitative Insights on Designing Side-by-side 

Participants’ post-study reflections provide some insight on why so many 
preferred exploring with the collaborative design agent (abbreviated as DA 
below) and how they perceived the DA. Several users pointed out comple-
mentary advantages they inferred in the DA, from speed to the ability to 
explore with more blocks at the same time. Others simply appreciated the 
experience of working together: “Exploring with the DA felt more like a 
collaborative effort, rather than working alone or watching someone else 
work on something” or saw the back-and-forth with the design agent as a 
way to reduce the randomness of their search. Some participants derived 
confidence from working with the design agent: “It felt like as if two brains 
were working simultaneously and there was a hope to achieve optimal con-
figuration”.  

On the other hand, some expressed annoyance with the agent: “It would 
have been better if the computer gave better suggestions alongside working 
with me...”. At least one user saw the design agent as a playful antagonist: 
“I enjoyed exploring with the DA at the same time because I almost felt like 
I was competing against the DA”. Several developed ad-hoc strategies for 
collaboration, e.g. splitting up the objectives: “After DA determined points 
from my selection, I rearranged the blocks to the DA point with the highest 
benefit. Then, I switched blocks to determine the lower cost”. The experi-
ences described by participants in the side-by-side condition, whether posi-
tive or negative, suggest that users are capable of seeing such agents as col-
laborators and not just tools. In particular, the variety of implicit choices and 
ad-hoc strategies users made in interacting with the design assistant while 
exploring the design space mirror observations prior work has made about 
human to human collaboration using TUIs, e.g. [52], including turn-taking, 
dominant-submissive pairs, and independent, parallel exploration. This sup-
ports the potential of intelligent agents acting as true collaborators in the 
design search process. 

Does Working Side-by-side Lead to Broader Search? 

In order to gain intuition about why users generated better designs after 
SBS exploration, we examined the solutions they encountered during search 
under the different conditions. Using one conventional way to compare sets 
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of solutions, we found that the set of configurations considered by partici-
pants in the SBS condition tended to dominate more of the objective space, 
in terms of hypervolume [53] (M=0.626, SD=0.134), than those explored in 
HUM (M=0.561, SD=0.145), (Fig. 8(a)). This difference was significant via 
a one-tailed paired t-test (t=2.45, p=0.010). Designs explored by partici-
pants in the OBS condition also tended to dominate less hypervolume than 
in SBS (M=0.603, SD=0.091), although this difference was not significant 
(t=1.07, p=0.146). 

 
Fig 8. In the SBS condition, participants tended to consider more Pareto-optimal 
designs as measured by the overall hypervolume dominated by the non-dominated 
Pareto frontiers in each condition (a). Nonetheless, the search spaces explored by 
human participants when collaboratively exploring in the SBS condition tended to 
cover fewer possible sensor-orbit pairings (b) and exhibit lower information entropy 
(c) than in the other two conditions. 

To our surprise, however, users appeared to explore less broadly in the 
SBS condition than in either the HUM or OBS conditions. To quantify this, 
we define the coverage of the exploration as the number of possible sensor-
orbit pairings that appeared in at least one evaluated configuration during 
the exploration. Similarly to [34], we also use the normalized entropy of 
explored configurations as a measure of diversity. We calculate entropy as: 

𝐻 𝑋 = 	−
1

𝑙𝑜𝑔𝑁
𝑝 𝑥- 𝑙𝑜𝑔𝑝(𝑥-)

0

-

 

where X is the configurations explored, N is the number of configurations in 
X, 𝑥- is a possible sensor-orbit pair, 𝑝 𝑥- 	is the probability of 𝑥- appearing 
in a configuration in X, and n is the number of possible sensor-orbit pairs. 

We find that participants tended to cover more of the orbit-sensor pair-
ings when searching the solution space in the HUM condition (M=44.93, 
SD=13.03) and the OBS condition (M=39.89, SD=12.79) than in the SBS 
condition (M=32.97, SD=10.53). Both of these differences were significant 
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via paired one-tail t-tests (t=5.357, p<0.001 and t=2.428, p=0.011 for HUM 
and OBS respectively). We also find that the human’s search tended to be 
more disordered when either exploring alone (M=1.482, SD=0.502) or pas-
sively observing (M=2.326, SD=0.672), again both significant via paired 
one-tail t-tests (t=3.093, p=0.002 and t=8.414, p<0.001 respectively). 

Participants’ post-study reflections suggest that working with the design 
agent encouraged them to converge more confidently and quickly to a more 
focused region of the configuration space. For example, “I could immedi-
ately see some sort of direction to move in instead of randomly guessing”, 
and “when we both (computer and I) are exploring together, less time is 
wasted, and productive results are easier to discover”. Indeed, as one user 
put it, “I felt lost without help from the computer”. 

However, as others observed, collaboration “might have led to a bias in 
what order to use and I resulted in a lower science benefit than I had on my 
own” and “exploring on my own gave me more freedom to try something 
completely different, and potentially get a more helpful combination”.  Par-
ticipants appreciated this freedom, saying, “it was really useful learning 
through trial and error”, and “exploring alone makes it easier and enjoya-
ble because it allows me to follow my own logic of exploration”. 

This raises an important conundrum for the design of collaborative 
agents, insofar as the processes for achieving better designs through collab-
oration may not coincide with those that best encourage broader exploration 
of the design space or generate more creative designs. Some work with TUIs 
found similarly that rapid design exploration enabled by physical interfaces 
could actually reduce the degree to which users reflect in the design process 
[11]. This result also evokes prior work suggesting conversely that leverag-
ing humans as a search heuristic can reduce the diversity of algorithmically 
generated solutions [39]. Insofar as a key benefit of collaborative design is 
its potential to foster broader exploration and emergence, future research 
should explore how interactions with collaborative design agents might ex-
pand, rather than contract, human designers’ exploration. 

Limitations and Future Work 

Our findings are somewhat constrained by the complexity and domain-spe-
cific nature of the design problem we chose in contrast with the relevant 
sophistication and expertise of our users. The resultant abstractness of the 
problem made it very demanding for our users, and could have added to the 
variance in our results, although we attempted to account for this with a 
within-user design. 
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TUIs are especially useful for co-present collaboration in a shared phys-
ical workspace. Although our agent interacted with the user through the tab-
letop interface and display, it did not do so physically. This study is part of 
an ongoing project in which we plan to study collaborative exploration be-
tween a human and a physically embodied design agent in a shared work-
space. Observing interactions between a virtual agent and a human through 
our TUI sand table is a first step towards this end. 

This work also does not empirically compare the human-agent collabo-
rative exploration to collaboration between humans. While some partici-
pants reported interacting with the agent in similar ways to what we see in 
the literature on co-present human-computer collaborations, future work 
should directly examine these similarities in order to lay the groundwork for 
designing better collaborative agents in this vein. 

Finally, while we adapted a design-as-search model, there are other po-
tentially richer formulations (e.g. design-as-exploration) that may better 
model real-world design processes. Future work should consider other for-
mulations of design which allow for important processes like problem re-
framing. 

Conclusion 

Humans and algorithms have different strengths and limitations in searching 
design spaces. Algorithms can quickly explore a large space and precisely 
compare solutions, while humans are adept at fast pattern recognition, gen-
eralization, and context integration. Egan and Cagan note the importance of 
both human intuition to handle difficult-to-translate qualitative processes 
and the objectivity and consistency of computation at scale [13]. This sug-
gests benefits to be reaped by systems that model the human-machine inter-
action as a collaborative activity, building on the complementary skills of 
each agent, e.g. flexible and conversational mixed initiative collaborations 
or adjustable autonomy for different contexts [1]. 

In this paper, we described a new tabletop tangible sand box interface in 
order to study real-time collaboration between humans and design-search 
algorithms. Such side-by-side human-computer collaborative exploration of 
a design space via a physical one-to-one mapping of the solution space has 
not been studied before, despite the potential it offers designers to capitalize 
on benefits of both collaborative and AI-supported design.  

In an experiment we find that the proposed model of side-by-side design 
collaboration can lead a human designer to generate better designs than 
when working alone or observing an agent, both in terms of the distance 
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from the Pareto front of the user-selected final design, and the hypervolume 
dominance of all explored designs. We also find marginal benefits to user 
positive affect and user experience. In particular, side-by-side design posi-
tively overcomes some of the trade-off between efficiency and stimulation 
that exists when weighing human-only and computer-only design.  

However, we also find that this sort of collaboration might lead to lower 
solution space coverage and less diversity in the solutions explored. As we 
do not want human-machine collaborative design to reduce the creativity 
and open-ended exploration that early-stage design requires, these concerns 
should be considered in the development of such agents and future research. 

This caveat notwithstanding, our work supports the feasibility of treating 
design agents not just as tools, but as peer collaborators in the exploration 
of possible solutions during early-stage design. 

Acknowledgments 

This work was supported primarily by the Civil, Mechanical and Manufac-
turing Innovation Program of the National Science Foundation under NSF 
Award No. 1635253. 

References 

1. Allen JF, Guinn CI, Horvtz E (1999) Mixed-initiative interaction. IEEE Intel-
ligent Systems and their Applications 14(5):14–23 

2. Arias E, Eden H, Fischer G, Gorman A, Scharff E (2000) Transcending the 
individual human mind--creating shared understanding through collaborative 
design. ACM Transactions on Computer-Human Interaction (TOCHI) 7(1):84–
113 

3. Arrow KJ (2012) Social choice and individual values, vol 12. Yale university 
press 

4. Babbar-Sebens M, Minsker BS (2012) Interactive Genetic Algorithm with 
Mixed Initiative Interaction for multi-criteria ground water monitoring design. 
Applied Soft Computing Journal 12(1):182–195 

5. Balling R (1999) Design by shopping: A new paradigm? In: Proceedings of the 
Third World Congress of structural and multidisciplinary optimization 
(WCSMO-3), vol 1, pp 295–297 

6. Chen R, Wang X (2008) An Empirical Study on Tangible Augmented Reality 
Learning Space for Design Skill Transfer. Tsinghua Science & Technology 13, 
Supple(October):13–18 

7. Cho SB (2002) Towards creative evolutionary systems with interactive genetic 
algorithm. Applied Intelligence 16(2):129–138 



 M. Law, N. Dhawan, H. Bang, S. Yoon, D. Selva, G. Hoffman 18 

8. Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjec-
tive genetic algorithm: Nsga-ii. IEEE transactions on evolutionary computation 
6(2):182–197 

9. Deb K, Karthik S, et al (2007) Dynamic multi-objective optimization and deci-
sion-making using modified nsga-ii: a case study on hydro-thermal power 
scheduling. In: International conference on evolutionary multi-criterion optimi-
zation, Springer, pp 803–817 

10. Dhanalakshmi S, Kannan S, Mahadevan K, Baskar S (2011) Application of 
modified nsga-ii algorithm to combined economic and emission dispatch prob-
lem. International Journal of Electrical Power & Energy Systems 33(4):992–
1002 

11. Do-Lenh S, Jermann P, Cuendet S, Zufferey G, Dillenbourg P (2010) Task per-
formance vs. learning outcomes: a study of a tangible user interface in the class-
room. In: European Conference on Technology Enhanced Learning, Springer, 
pp 78–92 

12. Durillo JJ, Nebro AJ (2011) jmetal: A java framework for multi-objective op-
timization. Advances in Engineering Software 42(10):760–771 

13. Egan P, Cagan J (2016) Human and computational approaches for design prob-
lem-solving. In: Experimental Design Research, Springer, pp 187–205 

14. Ferguson G, Allen JF, et al (1998) Trips: An integrated intelligent problem-
solving assistant. In: AAAI/IAAI, pp 567–572 

15. Fischer G (2004) Social creativity: turning barriers into opportunities for col-
laborative design. In: Proceedings of the eighth conference on Participatory de-
sign: Artful integration: interweaving media, materials and practices-Volume 
1, ACM, pp 152–161 

16. Gero JS (1998) Conceptual designing as a sequence of situated acts. In: Artifi-
cial intelligence in structural engineering, Springer, pp 165–177 

17. Grosz BJ (1996) Collaborative systems (aaai-94 presidential address). AI mag-
azine 17(2):67 

18. Hay L, Duffy AHB, McTeague C, Pidgeon LM, Vuletic T, Grealy M (2017) A 
systematic review of protocol studies on conceptual design cognition: Design 
as search andexploration. Design Science 3:e10, arXiv:1011.1669v3 

19. Hitomi N, Bang H, Selva D (2017) Extracting and applying knowledge with 
adaptive knowledge-driven optimization to architect an earth observing satel-
lite system. AIAA Information Systems-AIAA Infotech@ Aerospace p 0794 

20. Ishibuchi H, Masuda H, Tanigaki Y, Nojima Y (2015) Modified distance cal-
culation in generational distance and inverted generational distance. In: EMO 
(2), pp 110–125 

21. Ishii H, Ratti C, Piper B, Wang Y, Biderman A, Ben-Joseph E (2004) Bringing 
Clay and Sand into Digital Design -- Continuous Tangible user Interfaces. BT 
Technology Journal 22(4):287–299 

22. Jeyadevi S, Baskar S, Babulal C, Iruthayarajan MW (2011) Solving multiobjec-
tive optimal reactive power dispatch using modified nsga-ii. International Jour-
nal of Electrical Power & Energy Systems 33(2):219–228 

23. Jordà S, Geiger G, Alonso M, Kaltenbrunner M (2007) The reactable: exploring 
the synergy between live music performance and tabletop tangible interfaces. 



 
Side-by-side Human-Computer Design using a Tangible User Interface 19 

In: Proceedings of the 1st international conference on Tangible and embedded 
interaction, ACM, pp 139–146 

24. Kaltenbrunner M (2009) Reactivision and tuio: a tangible tabletop toolkit. In: 
Proceedings of the ACM international Conference on interactive Tabletops and 
Surfaces, ACM, pp 9–16 

25. Kicinger R, Arciszewski T, De Jong K (2005) Evolutionary computation and 
structural design: A survey of the state-of-the-art. Computers & Structures 
83(23):1943–1978 

26. Kim HS, Cho SB (2000) Application of interactive genetic algorithm to fashion 
design. Engineering Applications of Artificial Intelligence 13(6):635–644 

27. Kim M, Maher M (2005) Comparison of designers using a tangible user inter-
face & graphical user interface and impact on spatial cognition. Proc Human 
Behaviour in Design 5 

28. Kim MJ, Maher ML (2008) The impact of tangible user interfaces on spatial 
cognition during collaborative design. Design Studies 29(3):222–253 

29. Laugwitz B, Held T, Schrepp M (2008) Construction and evaluation of a user 
experience questionnaire. In: Symposium of the Austrian HCI and Usability 
Engineering Group, Springer, pp 63–76 

30. Laumanns M, Thiele L, Deb K, Zitzler E (2002) Combining convergence and 
diversity in evolutionary multiobjective optimization. Evolutionary computa-
tion 10(3):263–282 

31. Liu H, Tang M (2006) Evolutionary design in a multi-agent design environ-
ment. Applied Soft Computing Journal 6(2):207–220 

32. Maher ML, Lee L (2017) Designing for gesture and tangible interaction. Syn-
thesis Lectures on Human-Centered Interaction 10(2):i–111 

33. McCarthy J (2007) What is artificial intelligence. URL: http://www-formal 
stanford edu/jmc/whatisai html 

34. Ozgur A, Johal W, Mondada F, Dillenbourg P (2017) Windfield: Learning wind 
meteorology with handheld haptic robots. In: HRIâ€™17: ACM/IEEE Inter-
national Conference on Human-Robot Interaction Proceedings, ACM, EPFL-
CONF-224130, pp 156–165 

35. Patten J, Ishii H (2000) A comparison of spatial organization strategies in 
graphical and tangible user interfaces. In: Proceedings of DARE 2000 on De-
signing augmented reality environments, ACM, pp 41–50 

36. Petersson K, Kyroudi A, Bourhis J, Ceberg C, Knöös T, Bochud F, Moeckli R 
(2017) A clinical distance measure for evaluating treatment plan quality differ-
ence with pareto fronts in radiotherapy. Physics and Imaging in Radiation On-
cology 3:53–56 

37. Ramchurn SD, Wu F, Jiang W, Fischer JE, Reece S, Roberts S, Rodden T, 
Greenhalgh C, Jennings NR (2016) Human-agent collaboration for disaster re-
sponse. Autonomous Agents and Multi-Agent Systems 30(1):82–111 

38. Reed P, Minsker BS, Goldberg DE (2003) Simplifying multiobjective optimi-
zation: An automated design methodology for the nondominated sorted genetic 
algorithm-ii. Water Resources Research 39(7) 



 M. Law, N. Dhawan, H. Bang, S. Yoon, D. Selva, G. Hoffman 20 

39. Selva D (2014 a) Experiments in knowledge-intensive system architecting: In-
teractive architecture optimization. In: Aerospace Conference, 2014 IEEE, 
IEEE, pp 1–12 

40. Selva D (2014 b) Knowledge-intensive global optimization of earth observing 
system architectures: a climate-centric case study. In: Sensors, Systems, and 
Next-Generation Satellites XVIII, International Society for Optics and Photon-
ics, vol 9241, p 92411S 

41. Selva D, Cameron BG, Crawley EF (2014) Rule-based system architecting of 
earth observing systems: Earth science decadal survey. Journal of Spacecraft 
and Rockets 

42. Shen W, Hao Q, Li W (2008) Computer supported collaborative design: Retro-
spective and perspective. Computers in Industry 59(9):855–862 

43. Shirado H, Christakis NA (2017) Locally noisy autonomous agents improve 
global human coordination in network experiments. Nature 545(7654):370–
374 

44. Simon HA (1996) The sciences of the artificial. MIT press 
45. Smithers T, Conkie A, Doheny J, Logan B, Millington K (1989) Design as in-

telligent behavior: An ai in design research program,(ed. js gero) artificial in-
telligence in design 

46. Smithwick D, Kirsh D, Sass L (2017) Designerly pick and place: Coding phys-
ical model making to inform material-based robotic interaction. In: Design 
Computing and Cognition’16, Springer, pp 419–436 

47. Starcic AI, Zajc M (2011) An interactive tangible user interface application for 
learning addition concepts_1217 131.. 135. British Journal of Educational 
Technology 42(6):E131–E135 

48. Thornton C, Du Boulay B (2012) Artificial intelligence through search. 
Springer Science & Business Media 

49. Ullmer B, Ishii H (1997) The metadesk: models and prototypes for tangible 
user interfaces. In: Proceedings of the 10th annual ACM symposium on User 
interface software and technology, ACM, pp 223–232 

50. Van Veldhuizen DA, Lamont GB (1998) Evolutionary computation and con-
vergence to a pareto front. In: Late breaking papers at the genetic programming 
1998 conference, pp 221–228 

51. Watson D, Clark LA, Tellegen A (1988) Development and validation of brief 
measures of positive and negative affect: the panas scales. Journal of personal-
ity and social psychology 54(6):1063 

52. Xie L, Antle AN, Motamedi N (2008) Are tangibles more fun?: comparing chil-
dren’s enjoyment and engagement using physical, graphical and tangible user 
interfaces. In: Proceedings of the 2nd international conference on Tangible and 
embedded interaction, ACM, pp 191–198 

53. Zitzler E, Brockhoff D, Thiele L (2007) The hypervolume indicator revisited: 
On the design of pareto-compliant indicators via weighted integration. In: Evo-
lutionary multi-criterion optimization, Springer, pp 862–876 

 
 


