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ABSTRACT

We address the challenge of inferring the design intentions of a

human by an intelligent virtual agent that collaborates with the

human. First, we propose a dynamic Bayesian network model that

relates design intentions, objectives, and solutions during a hu-

man’s exploration of a problem space. We then train the model on

design behaviors generated by a search agent and use the model

parameters to infer the design intentions in a test set of real human

behaviors. We find that our model is able to infer the exact inten-

tions across three objectives associated with a sequence of design

outcomes 31.3% of the time. Inference accuracy is 50.9% for the top

two predictions and 67.2% for the top three predictions. For any

singular intention over an objective, the model’s mean F1-score is

0.719. This provides a reasonable foundation for an intelligent vir-

tual agent to infer design intentions purely from design outcomes

toward establishing joint intentions with a human designer. These

results also shed light on the potential benefits and pitfalls in using

simulated data to train a model for human design intentions.

CCS CONCEPTS

· Human-centered computing → Human computer interac-

tion (HCI).
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1 INTRODUCTION

Intelligent virtual agents have the potential to aid human designers.

If we think of the design process as a search through a space of

potential solutions to a task [27], computational agents can search

at a scale and with precision that outstrips any human designer.

Still, humans possess the ability to reason abductively, which can

allow them to navigate the ill-defined and highly contextual nature
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of most design tasks more efficiently than heuristic search methods.

These unique but complementary capacities suggest the advantage

of blending computational design with human intuition.

In this work, we propose a step toward realizing virtual co-design

agents by examining how an agent might infer a human partner’s

design intentions with respect to a task. Specifically, we present

the following contributions:

(1) A probabilistic model relating design intentions to outcomes.

(2) A search agent to simulate design data used to train the

parameters of this model.

(3) An LSTM-FCN network [14] for predicting design intentions

from objective traces.

(4) An interactive system to collect data from a multi-objective

design task.

(5) Experimental results of intention inference using data logs

from the interactive system.

We illustrate our approach using the civic design task of drawing

voting districts in the United States. Every ten years, US states

are required to re-draw geographic boundaries of voting districts.

Drawing łfairž districts is a difficult design problem, as district

boundaries can affect representation across interest groups, and

there are usually trade-offs between well-intentioned measures

of fairness. It is up to the district designer to balance these, and

different intentions can lead to very different designs.

To study design intention inference in this context, we imple-

mented a system for humans to design voting districts and visual-

ize outcomes (Figure 1). We collected data of designers using this

system and developed a computational system that tries to infer

fairness-promoting design intentions from observed outcomes.

2 MOTIVATION

Our interest in peer collaboration in design tasks is inspired by

recent work that attests the benefits of having humans and artificial

intelligence (AI) play equal roles in co-creative tasks.We specifically

focus on design intentions because joint intentions are critical to

any collaborative effort [7], but may be difficult to establish for

design tasks, which tend to be highly ill-defined [8, 24].

2.1 AI, Design, and Enactive Co-Creativity

2.1.1 What should an Intelligent Design Agent Do? Interactive vir-

tual agents have not traditionally been the focus of applying AI

to design. Schön delineates functional equivalence, where compu-

tational tools enhance specific elements of human design activity,

from phenomenological equivalence, where agents emulate core hu-

man design activities [26]. Most research in AI-supported design

hews to the perspective of functional equivalence. For example,

systems help humans evaluate designs [25], answer queries about

a design space [5], and make suggestions [31]. Interactive genetic
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Figure 1: Users of our interface can partition a state into districts using an interactive map (top left). As they construct designs,

they can visualize fairness-related outcomes as overlays on the state map accompanied by bar graphs (right and bottom).

algorithms generate new solutions on behalf of a human expert

who guides the search by evaluating the designs it finds [4].

2.1.2 Enactive Co-Creativity with Computer Colleagues. Recently,

Davis et al. have argued that both humans and agents can benefit

from creative collaborations where agents play more human-like

roles [10]. Enactive cognition posits that humans make sense of

the world by interacting with it. Likewise, enactive agents can be

designed to adapt and learn through improvisational, collegial in-

teractions with human creators that enable more fluid co-creativity.

The future of AI design agents probably lies somewhere between

support tools and virtual colleagues. Agents should address tasks

that computers, and not humans, are good at. At the same time,

design is highly social and benefits from the interaction of different

łdesign worldsž. Agents that emulate enough aspects of human

designers to serve as creative foils may offer the best of both worlds.

2.2 The Role of Intentions in Collaboration

Virtual design partners must be able to read human design in-

tentions. Joint intentions are well-established as prerequisite to

collaborative effort. Bratman differentiates intentions from goals

or desires as łintimately related to endeavoring and actionž [7],

not only motivating, but controlling what we do. This makes col-

laborative action without joint intentions difficult or impossible.

This reality applies to human-agent collaboration. Allen et al. assert

that negotiation of shared objectives is necessary for collaborative

agents [2]. Similarly, Vernon et al. argue that the ability to perceive

low-level and high-level intentions is essential in the design of

cognitive robots [29]. In our own work, we observed collabora-

tion breakdowns when interactions between a human and an AI

agent surfaced different design intentions [17]. As discussed in the

next section, we believe that the problem of intention inference is

particularly challenging in the context of design tasks.

2.3 Ill-Definition and Design Intentions

Design tasks are a subset of ill-defined problems. Rittel and Webber

coined the term łwicked problemsž to describe the complexity

and ambiguity that confront designers [24] and shape how they

think [8]. Early attempts to formalize design (e.g. [1, 27]) required

a task to be structured before it could be solved. As Simon points

out, choices made about structure heavily influence solutions [27].

This ill-definition amplifies the importance of intention inference

to collaboration. Effective collaborators must understand how each

of their teammates interpret a task and intend to solve it. While it

may be difficult for a designer to formulate or express their inten-

tions a priori, humans develop the ability to infer others’ intentions

from actions at a young age [29]. As a first step towards collabo-

ration, we ask how a virtual agent might read a human’s design

intentions from their choices as they explore a solution space.

3 RELATED WORK

Our work draws on two bodies of literature: computational models

of how designers think, and intelligent systems inferring human

intentions from their behavior.
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3.1 Computational Models of Design Thinking

We build on a rich history of computationally modeling human

design behavior, with a particular focus on the role played by design

intentions. A full accounting of computational models of designing

is beyond the scope of this paper; a comprehensive map of such

models can be found in [30]. Models of design behavior can typi-

cally be broken down into prescriptive (e.g. [22]) and descriptive

(e.g. [11, 27]), as well as stage-based (e.g. [27]) and process-based

(e.g. [11]). In this work, we adopt a descriptive, stage-based model

of designing. We are heavily influenced by sequential models of

design in which the designer alternates between constructing a so-

lution and reformulating the task [18]. However, we assume a static

formulation of the task (the designer’s intentions) for simplicity.

3.2 Inverse Reinforcement and Preference
Learning

One way to understand human intentions is through a reward

function that motivates how they act. Assuming a human seeks

to maximize reward, the reward function can be inferred from

their behavior. One approach, inverse reinforcement learning [21]

(IRL) solves for a reward function given a known human expert’s

policy or sampled trajectories of behavior generated by this policy.

Optimizing over an appropriate reward function is a critical factor

in agent effectiveness, and, under some assumptions, IRL can avert

the burden of reward engineering in agent design.

However, IRL canonically optimizes these reward weights assum-

ing that the policy or observed behavior is optimal. When designing,

however, even if the designer knows the optimal policy, they may

not always adopt it, choosing to experiment with new ideas instead.

Figuring out how to relax the optimality assumption for human

behavior is an open problem in IRL, with some arguing that this

may be impossible without strong normative assumptions [20].

Another approach to ease reward engineering, preference learn-

ing, learns a reward function that encodes human preferences of-

fline, using supervised methods with human-labeled pairwise pref-

erences [9]. However, our goal is not to learn implicit features that

underlie a general set of human preferences, but rather how to

differentiate between individual preferences for different designers

in the context of how they explore a complex, unstructured task.

4 A MODEL OF DESIGN INTENTIONS

We formalize the design process as a Markov process in which the

designer moves from one solution to another according to their

intentions and what they have learned along the way.

4.1 Intentional Design as a Markov Process

A designer has beliefs about how design features cause outcomes

and has intentions about the quality of these outcomes (Figure 2).

To explore the design space, they modify a current solution or syn-

thesize a new one, observing the changing outcomes as the design

evolves. Each of these observations can influence the designer’s be-

liefs and drive the next design change. This process continues until

the designer is satisfied with the current solution. This formulation

does not necessarily require that the designer operates rationally,

either in how they perceive outcomes, update their beliefs, or syn-

thesize a new design.

Design

Solution

Intentions

Beliefs

Design

Solution

Outcomes

Intentions

Beliefs

𝑡 − 1 𝑡 𝑡 + 1

Synthesis

Update

Figure 2: Each new design solution is synthesized from the

current design based on the designer’s intentions and beliefs

about the design space. Beliefs are updated based on how the

current solution affects observed outcomes.

4.2 A Probabilistic Graphical Model of Design

More concretely, let 𝑋 be the space of design features associated

with a task, and 𝑌 the space of measurable design outcomes, with

𝑓 : 𝑋 ⇒ 𝑌 the mapping between the two. The designer typically

does not know 𝑓 explicitly but holds beliefs 𝑏 ∈ 𝐵, over the space

of possible functions 𝑓 . The designer also intends to realize certain

design outcomes; suppose that there is some set of all possible

intentions, 𝐼𝑎𝑙𝑙 = {𝑖0, 𝑖1, ...}, where each intention targets some

dimension of 𝑌 , for example, improving the voter efficiency of

a district design. We represent the subset of intentions held by

the designer, 𝐼 ⊆ 𝐼𝑎𝑙𝑙 , as a binary vector, where each component

indicates the presence (1) or absence (0) in 𝐼 of an intention in 𝐼𝑎𝑙𝑙 .

This process can be represented using a Dynamic Bayes Network

(Figure 3). Starting with some initial design, 𝑥0, informed by their

intentions, 𝐼 , the designer observes 𝑦0, and updates their beliefs

about the design space, 𝑏0. Based on 𝑥0, 𝑦0, 𝑏0, and 𝐼 , the designer

constructs 𝑥1, observes outcomes𝑦1, updates their beliefs to 𝑏1, and

so on, terminating the process when they are satisfied after some 𝑛

steps. We are making the simplifying assumption that a designer’s

intentions do not change for the duration of a design session.

From the perspective of an agent observing the human designer,

only the designs 𝑥0 ...𝑥𝑛 and corresponding outcomes 𝑦0 ...𝑦𝑛 are

observable. If the agent wants to maintain joint intentions with

the human, it has to infer 𝐼 from sequences of designs, outcomes,

and beliefs. In this paper, we simplify the model to include only

the intentions, 𝐼 , and outcomes, 𝑦0, ...𝑦𝑛 (shaded region in Figure 3).

We remove 𝑥0, ...𝑥𝑛 , as, depending on the complexity of the design

feature space, observing how the actual design changes may be less

informative than how the outcomes associated with those designs

change. Additionally, we remove the model of designers’ beliefs as

these are neither observable, nor necessarily known to the designer.

We discuss the cost of these simplifications in Section 7.

5 INFERRING INTENTIONS FROM
OUTCOMES

To infer the probability that the designer has some intention 𝑖 given

a sequence of outcomes they designed, we use a neural network

that approximates 𝑃 (𝑖 ∈ 𝐼 |𝑦0 ...𝑦𝑛). We frame this as a multi-label

time-series classification problem, where each sequence of design

outcomes is associated with one or more design intentions. Our

approach to solving this multi-label problem is to convert it to

a multi-class classification problem over the power set of 𝐼𝑎𝑙𝑙 , as

described in [28]. If we do not consider the possibility of a designer
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Figure 3: The design process described in Figure 2 can be rep-

resented as a Dynamic Bayes Net. Each design, 𝑥𝑡 , is depen-

dent on the previous design, 𝑥𝑡−1, and its outcomes, 𝑦𝑡−1, the

designer’s intentions, 𝐼 , and the state of the designer’s be-

liefs, 𝑏𝑡−1. The design and its outcomes influence the state

of the designer’s beliefs about the design space.

having no intentions, our problem thus becomes mapping a set

of𝑚 design outcomes onto a probability distribution over 2𝑘 − 1

classes, spanning 𝑘 = |𝐼𝑎𝑙𝑙 | possible intentions.

5.1 Classifying Outcome Trajectories with
LSTM-FCN

Drawing on Karim et al. [14], we use an LSTM-FCN network as a

classifier. While fully convolutional neural networks can effectively

learn structure in time series data, training one together with an

LSTM has been shown to outperform the features learned by either

approach independently [13]. Our architecture for the network is

adapted directly from [14] and specified in Figure 4.

Figure 4: We classified design intentions from observed out-

comes using an LSTM-FCN architecture adapted directly

from [14]. The input to the network is a 20-step sequence of

design outcomes; the output is a probability over the seven

possible combinations of design intentions.

To augment our data and extract fixed-width observation se-

quences, we slid a window of twenty steps across the entire explo-

ration trace. These sequences were passed through both a series

of 1-D convolutions and an LSTM block. The outputs of the FCN

and LSTM are passed to a final seven-dimensional softmax layer,

where each node represents the probability that the sequence was

generated by one of seven discrete binary intention vectors.

5.2 Data Collection

We trained and evaluated our model using trajectories of design

outcomes observed while exploring the voting district design task

described in Section 1. In this study, we chose to focus intentions on

three district design outcomes: balancing the population between

districts, improving voter efficiency by minimizing wasted votes,

and maximizing the compactness of district shapes. A subset of

design intentions in this context is a binary 3-vector of the form

𝐼 ∈ {0, 1}3, corresponding to these three intentions, respectively.

5.2.1 Collecting Human Design Exploration Data. We first asked

humans to design for different sets of fairness design intentions and

recorded the design outcomes of the solutions that they explored

along the way. To this end, we built a custom redistricting inter-

face for the US state of Wisconsin, described in the next section.

We collected outcome traces from four members of our research

team working on each of the seven combinations of intentions

(e.g., [1, 0, 1], [0, 1, 1]) until they were satisfied. The intentions were

presented in random order. In total, these traces contained design

outcomes for 4826 design steps, an average of 689.4 steps per task

(Table 1).

5.2.2 Distopia: An Interface for Voting District Design. Distopia is

a system that allows either humans or virtual agents to explore

different voting district designs, using a similar interface. Human

designers interact with the system through a two-window graphical

interface (Figure 1). On the control screen (top left in the figure), the

human can read information about the design task, divide a map of

the state into districts, and select different outcomes to visualize.

The human is presented with a set of intentions in natural language.

For example, łTry to evenly balance the number of people each district

has. Try to create districts that minimize the number of wasted votes.

Try to create districts that are round and regularly shaped.ž We also

provide a timer and buttons to move on or reset the map and timer.

Designers draw districts by placing numbered markers on the

map. Each marker allocates the space around it to a corresponding

district ID. This is accomplished by performing a Voronoi decom-

position of the map around the markers, discretized to the state’s

county boundaries. To realize complex district shapes, a designer

can place multiple markers; partitions with the same ID are merged.

Outcomes are calculated and visualized for each design at the

district level. The population of each district is summed over the

counties that compose it. We use historical election data [15] to

calculate the partisan lean for each district, summing over the votes

for Republicans and Democrats in each county. A district’s wasted

votes are counted by taking the margin between the number of

winning votes and half the votes in that district. Finally, we calculate

the compactness of each district’s shape as the ratio between its area

and the area of a circle with the same perimeter as the district [23].

Users can overlay heatmaps for any of the outcomes on the current

districts, or view the partisan breakdown of votes in each district.

We record each design outcome as a single aggregate score over

all the districts in the state. These scores are the standard deviation

of district populations, maximum number of wasted votes, and av-

erage compactness. The three design intentions map to minimizing

each of the first two scores and maximizing the last, respectively.

5.2.3 Local Search as a Proxy for Human Design Exploration. The

amount of data needed to train an intention classifier poses a stiff

challenge in the context of designing. Design tasks are often one-

off problems or rare events, such as the once-in-a-decade voter
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DI [0,0,1] [0,1,0] [1,0,0] [0,1,1] [1,0,1] [1,1,0] [1,1,1]

Steps 780 689 632 740 751 603 631

Table 1: Number of steps explored per set of design inten-

tions (DI) in the human test data. The intentions are labeled

by binary vectors, with indices mapping onto population

balance, voter efficiency, compactness, respectively.

redistricting task. Moreover, they often take considerable time and

effort, with parameters that do not easily generalize across contexts.

As a result, models that require large amounts of data, such as

neural networks, are difficult to train in the design context.

We approach this challenge by training on simulated data, using

a search agent as a proxy for a human designer. After generating a

model, we evaluate it on the human-generated test set. We discuss

the promise and shortcomings of this approach in Section 7.

An 𝜖-greedy local search agent serves as our proxy for a human

designer. Exactly like the human designer, the agent partitions the

state into districts by arranging district markers. The agent’s design

is initialized with a random collection of markers, constrained such

that it has at least one and no more than five per district. For each

agent run, the design intentions are static, and the agent evaluates

the initial design using the aggregate outcomes associated with

each intention in the predefined set. Outcomes are 𝑧-standardized to

account for different scales, using the distribution of a 50, 000-design

random walk. Once it has calculated the quality of the current

design, the agent samples potential modifications, each consisting

of moving one district marker. It evaluates each change based on

the metrics relevant to its design intentions, then chooses the best

one, choosing something random instead with probability 𝜖 . We set

𝜖 at 0.8 with a decay of 10% per step, down to a minimum value of

0.1. To produce our training data, we ran this 𝜖-greedy agent over

the seven combinations of intentions for 130 episodes of 100 steps

each. This resulted in a total of 73,710 sliding-window samples of

20-steps, as discussed below.

6 RESULTS

We trained the LSTM-FCN network on 70% of the simulated data,

holding 30% out randomly for validation. Before training, we 𝑧-

standardized the simulated data and augmented the data by slid-

ing a window of 20 steps across each episode. We updated the

network using cross-entropy loss and the Adam gradient descent

method [16], with a learning rate of 1𝑒−3, 𝛽1 = 0.9, and 𝛽2 = 0.999.

The model fit the training data well, with a final training accuracy

of 0.960 and validation accuracy of 0.945 after 50 epochs.

We then used the trained network to infer design intentions on

the human-generated data set. We separately 𝑧-standardized and

windowed the human data in the test set. Since the length of human

exploration on each set of intentions varied, we randomly sampled

from the windows to achieve a balanced set of 500 per class.

6.1 Metrics for Multi-Label Classification

To evaluate the performance of the multi-label classifier, we use

two notions from Sorower [28]: complete accuracy and partial accu-

racy. Complete accuracy describes the rate at which the network

correctly predicts the human’s intentions with respect to all three

outcomes (population balance, voter efficiency, and compactness),

i.e. the binary representation (e.g., [1, 0, 1]) of intentions. We also

report how often the complete intention set was in the network’s

top two or top three most probable classes.

We are also interested in partial accuracy, i.e., the precision and

recall for each individual intention. The precision with respect to

any single intention (e.g., compactness) indicates how often the

designer was actually trying to achieve compactness when the

network predicted that they were, regardless of other intentions.

Similarly, recall would tell us how often, if any particular intention

was present, that it was predicted as one of the intentions.

6.2 Complete Accuracy

Our network achieved a complete accuracy of 0.313 over the seven

subsets of intentions in the human exploration data. Since the test

data was balanced over seven classes, this compares to a chance

accuracy of 0.143. Taking into account class probabilities at the

output layer, we further find that the network had a complete

accuracy of 0.509 over its top two choices, and 0.672 over its top

three. Figure 5 shows the confusion matrix for the class predictions

and precision and recall for each class. Figure 6 plots the mean

and per-class recall in the top-1, top-2, and top-3 probabilities,

compared to the baseline chance recall for each type of test. These

plots indicate that the classifier did much better at predicting certain

subsets of intentions than others. The classifier tends to have higher

recall and precision for classes that only contain one intention (blue

in Figure 6), in particular population balance ([1, 0, 0]) and voter

efficiency ([0, 1, 0]). While compactness alone ([0, 0, 1]) has lower

recall, 92.5% of the false negatives for that class predict an intention

to maximize compactness, suggesting higher partial accuracy. The

classifier does particularly poorly on the multi-intention classes

[1, 1, 0] and [1, 1, 1]. That said, 72.4% of the false negatives for

[1, 1, 0] are split between the two corresponding single-intention

classes ([1, 0, 0] and [0, 1, 0]), and 72.0% of the false negatives for

[1, 1, 1] are split between the three classes with two intentions.

These trends can be illustrated in the partial accuracy analysis.

Figure 5: This confusionmatrix shows prediction frequency

for each subset of design intentions, represented as binary

masks over [balance population, improve voter efficiency,

maximize compactness]. For example, 101 represents inten-

tions to balance population and maximize compactness.
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Figure 6: This plot shows the frequency with which the clas-

sifier predicted all three of the design intentions for each

class, color-coded by the number of intentions, within the

top one, two, and three most probable classes. The dotted

lines show the threshold of random chance for each of these

and themean across classes for each group is shown in gray.

Figure 7: These confusionmatrices show the frequencywith

which themodel predicted the designer’s intentions towards

a specific outcome.

6.3 Partial Accuracy

On the level of individual intentions, we found that the network’s

predictions had a precision of 0.728 and recall of 0.725 (F1-score

0.726) for balancing population, precision 0.711 and recall 0.642

(F1-score 0.675) for improving voter efficiency, and precision 0.778

and recall 0.734 (F1-score 0.755) for maximizing compactness. Aver-

aging across the labels produces overall precision 0.739 and recall

0.700, (F1-score 0.719). When the network predicted a human was

designing for any one of the three intentions, it was correct, on

average, 73.9% of the time, and it detected when the human was

designing for an intention, on average, 70.0% of the time. Interest-

ingly, in contrast to the class-level metrics, but in-line with our

analysis above, the network actually predicts whether the human

is maximizing compactness most reliably. Confusion matrices for

each of the intention labels can be seen in Figure 7.

7 DISCUSSION

Results from our evaluation indicate that an agent observing a de-

signer can infer their complete intentions over three objectives with

better-than-chance (31.3% vs. 14.3%) accuracy, have them within its

top two predictions with probability 50.9%, and detect individual

intentions with circa 70% precision and recall. It does so by learn-

ing about the probabilistic intention-objective relationship using

simulated data generated by an 𝜖-greedy search agent.

These results can provide a basis for the development of intention-

aware virtual design agents, but also highlight tradeoffs to consider,

especially when using simulated design behavior as the basis for

real-world intention inference. We discuss these topics below, as

well as ways to improve our model of design intentions.

7.1 Toward Intention-Aware Co-Design Agents

Given the ability to infer a human’s design intentions based on

their design activity, how can a virtual agent use this information

to be a useful co-designer? Perhaps the simplest way for an agent to

operationalize its predictions is to adopt them itself. Our 𝜖-greedy

search agent, for example, could use predicted intentions to weigh

outcomes when evaluating new designs. With that in mind, we note

that our model, while better than random, did not reliably predict

the human’s intentions with respect to all three design outcomes at

once. Adopting predictions that are correct 31.3% of the time may

not yield design choices sufficiently aligned with a human partner

to maintain collaborative effort. In contexts with more than three

possible design intentions, this would be even more difficult.

A more nuanced approach of considering labels individually,

however, seems promising. If a person intended to design for a spe-

cific outcome, our model identified it 70.0% of the time. Conversely,

73.9% of the time when it predicted an intention, the designer was

actually designing for the associated outcome. A virtual co-design

agent could marginalize across the softmax output of the neural

network to extract a probability that the designer holds each possi-

ble intention, thresholding intentions to act on. Treating intentions

individually also gives the agent flexibility in how it acts on them.

For example, the agent might choose to explore designs that opti-

mize high-probability intentions or make less-binding suggestions

optimizing for intentions near the probability threshold.

Ultimately, establishing joint intentions requires mutual aware-

ness between collaborators that they share intentions, and a com-

mitment to design for them together. Whatever the accuracy of

the agent’s model of what a human’s intentions are, it must com-

municate this awareness. As such, a reasonable estimate of the

probability that any design intention is held by a human teammate

offers a basis for an agent to initiate communication about joint

intentions, whether directly or implicitly through shared designs.

7.2 Toward a Better Probabilistic Model of
Design Intentions

The usefulness of any model is dependent on its ability to simplify

the real world without losing its ability to express the underlying

phenomenon that it represents. Designing is an extraordinarily

complex human process. We make several simplifying assumptions

in our model to study the relationship between intentions and

outcomes, but in doing so, we run the risk of losing aspects of

complexity that are at the essence of what designing is.

To begin with, we chose not to model design space features or

beliefs about the design space explicitly, focusing instead on design

outcomes and intentions. However, both variables hold informa-

tion that could influence how we predict design intentions. Firstly,

certain design patterns may correlate with intentions without trans-

lating into good outcomes; accounting for this could increase the

recall of our intention predictions. For example, many small dis-

tricts in a population-dense region could indicate an intention to

balance populations, even if outcomes do not yet reflect that.
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Human Data

Standardized Using

Class

Accuracy

Label

Precision

Label

Recall

Label

F1-Score

1st 2nd 3rd Overall P V C Overall P V C Overall P V C

Human Data 0.313 0.509 0.672 0.739 0.728 0.711 0.778 0.700 0.725 0.642 0.734 0.719 0.726 0.675 0.755

Agent Data 0.297 0.501 0.669 0.785 0.675 0.772 0.907 0.608 0.922 0.441 0.463 0.651 0.779 0.561 0.613

Table 2: This table compares the performance of our intentions model on human data that has been standardized using the

distribution of all human design outcomes and the distribution of all agent design outcomes. This includes the class accuracy

of the top one, two, and three predictions for each sample, as well as label-wise precision and recall for balancing population

(P), improving voter efficiency (V), and making compact shapes (C).

Secondly, as a designer learns more about a design space, their

design choices should more reliably produce good outcomes that

align with their intentions. Removing the human’s beliefs about

the design space introduces an unexplained temporal dependency

that weakens the somewhat tenuous Markov assumption that each

new design is only dependent on the prior state, independent of

the order of exploration. Our choice not to account for this depen-

dency could impose a severe limit on our ability to fit outcomes to

intentions. Other work models human beliefs in behavior [3], but

accounting for and tracking human beliefs about the design space

would significantly complicate our model.

Finally, while we model design intentions as static, they more

likely evolve as designers explore a task. Designers may not actually

know their intentions when they start designing, and what they

learn about design dynamics and possibilities through exploration

should change how they interpret the task. This widely held posi-

tion has motivated cognitive and computational models of problem

and solution co-evolution in designing [18, 19].

One reason we chose to model design intentions statically is the

challenge of training a transition model for how humans tend to

move from one intention to the next. Collecting human data for this

task would require somemeans of probing human design intentions

as they evolve, rather than pre-defining them as we did. This raises

issues common to self-reporting, e.g. designers’ difficulty expressing

their intentions and the probe itself breaking the immersion of

the design process. With that said, it may be possible to extract

a transition model from agent-simulated behavior, as Maher et al.

have demonstrated the feasibility of searching concurrently through

design problem and solution spaces [18] and Grace and Maher have

explored reframing design goals by modelling surprise [12].

7.3 Advantages and Pitfalls in Simulating
Human Design Behavior

We envisage several potential benefits in simulating human design

behavior with an agent. Clearly, simulated data can be more cost-

efficient to collect at scale. Designing is cognitively demanding

and typically consists of extended and thoughtful exploration, after

developing a basic understanding of the task and design interface.

Simulated design proxies can further be used to explore less popular

or obvious subsets of the design space. Assigning intentions to

participants, as we did, is only feasible with small intention sets,

and assigning designers to intentions that they may not wish to

adapt can potentially inhibit how naturally they explore solutions.

The idea of using agent behavior to infer human intentions is

well-founded in theories of human cognition, in particular those

ascribing to a variant of simulation theory [6, 29]. Similarly, our

findings suggest that agents might be able to reason about human

intentions based on their own experience.

Still, there is a clear gap in how our model generalizes from sim-

ulated training and validation data to the human data. This raises

questions about what characteristics of agents affect their capacity

to simulate human design behavior. Our 𝜖-greedy proxy agent was

simple and allowed for the likelihood that humans do not monoton-

ically improve designs. However, non-optimal behavior may not

be random choiceśa human might choose a non-optimal design on

a hunch that it will pay off in the long run, to learn more about

the design space, or to test something they are uncertain about.

Perhaps an agent designed to balance exploration and exploitation

(e.g. using Bayesian optimization or reinforcement learning), could

represent this kind of deliberate meandering more closely.

One way that we reconciled potential differences between the

simulated design process and the real human design process was

by standardizing the agent and human data each according to their

own distributions. This step may not be fair or realistic; since it

relies on information about the human data, it may be better to

think of the model as predicting intentions from outcomes relative

to some understanding of human behavior. Indeed, the distribu-

tions of raw outcomes under each intention suggest that human

designers tended to find districts with more balanced populations,

while the agents tended to waste fewer votes and draw more com-

pact boundaries (Figure 8). If we standardize the human data to

the underlying distribution of the agent’s data instead, the model

predictions reflect these shifts (Table 2). While the class-level perfor-

mance measures are similar, the model tends to over-predict human

intentions to balance population and under-predict intentions to

minimize wasted votes or maximize compactness.

This underscores the difficulty of studying how proxy agents can

more closely approximate human behavior. We can only speculate

why the distributions are different, but there will always be limits

to how well we can emulate the underlying processes that drive

design exploration for a given task, and the differences can be highly

contextual. One approach to handling this without losing scale

could be to simulate using proxy agents that learn from humans,

e.g. by taking into account human distributions from samples, or

through learning by demonstration and policy shaping methods.

8 LIMITATIONS AND FUTUREWORK

One limitation of this work involves our choice of design task. De-

sign tasks are notoriously contextual, and our findings and insights

may not generalize to a breadth of tasks. In particular, we dealt with

limited ill-definition, having only three possible design intentions

for the human to choose from. Tasks with more, less explicit, and

evolving design intentions should be explored in future work. At
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Figure 8: Density plots of relevant raw design outcomes for

each intention, as explored by agent and human designers,

suggest that, while humans found designs with more bal-

anced populations, the agent tended to be more effective at

improving voter efficiency and maximizing compactness.

the same time, we hope to incorporate contextual features about

the design and the human designer’s behavior into our predictions.

There are also limitations around our test set, which was gen-

erated by four members of the research team. Future work must

evaluate whether these results generalize to a larger and more

diverse test set, with considerations for important factors like de-

signer expertise. A more robust set of human data could also be

used to study how different features of search agents influence their

effectiveness as proxies for human design behavior.

Finally, this work proposes a model to predict design intentions

but does not integrate it into a collaborative design agent or evaluate

how said predictions influence the ability of an agent to effectively

collaborate with a human. Testing how intention-aware agents

perform as teammates with human participants will be necessary

to generate more practical design guidelines and evaluate the kinds

of value that models of design intentions can provide.

9 CONCLUSION

In this paper, we studied intention inference as an important and dif-

ficult challenge en route to human-AI collaborative design through

intelligent virtual agents. We propose a model to predict human

design intentions from observed design outcomes and develop a

data collection system to collect design behavior across multiple

objectives. We fit our model on simulated design behavior and

evaluate it on human test data. Our results suggest ways in which

an agent’s beliefs over individual intentions might prove useful in

establishing joint intentions, as well as avenues for deeper study of

using agents as data proxies for human designers.
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