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ABSTRACT
We propose a method for modifying affective robot movements
using neural networks. Social robots use gestures and other move-
ments to express their internal states. However, a robot’s interactive
capabilities are hindered by the predominant use of a limited set of
preprogrammed or hand-animated behaviors, which can be repeti-
tive and predictable, making sustained human-robot interactions
difficult to maintain. To address this, we developed a method for
modifying existing emotive robot movements by using neural net-
works. We use hand-crafted movement samples and a classifying
variational autoencoder trained on these samples. Our method then
allows for adjustment of affective movement features by using sim-
ple arithmetic in the network’s latent embedding space. We present
the implementation and evaluation of this approach and show that
editing in the latent space can modify the emotive quality of the
movements while preserving recognizability and legibility in many
cases. This supports neural networks as viable tools for creating
and modifying expressive robot behaviors.

CCS CONCEPTS
•Artificial intelligence→Cognitive robotics; •Machine learn-
ing→ neural networks; • Human-centered computing→ HCI
theory, concepts and models.
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1 INTRODUCTION
In this work, we demonstrate the use of neural networks to modify
the affective qualities ofmovements for an expressive robot. Current
robot movement generation methods demand a deep understanding
of the domain and its feature space, rendering these processes costly
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and hard to implement. Conversely, neural networks used in deep
learning are able to learn the feature space on their own, reducing
the dependency on domain knowledge. Neural networks may thus
be applicable to the creation of expressive robot movements.

Robots designed for social interaction are becoming more com-
mon in spaces such as homes and storefronts. Movements and
gestures are important modes of nonverbal communication that
are unique to robots compared to other agents without physical
bodies [11, 15]. There are various methods for creating expressive
movements, from manual trajectory editing interfaces to learning
from demonstration (LfD) [2]. However, these methods can be slow
and often require prior knowledge of a specific robot platform.
These techniques are thus difficult to implement and lacking in
generalizability. To more quickly create new behaviors, roboticists
sometimes turn to adjusting affective qualities of existing robot
movements [4, 8, 21, 27]. Adjustment is easier than authoring new
movements, but still requires technical knowledge of kinematics
and movement theory. These pitfalls lead to robot behaviors usu-
ally being preprogrammed, creating a novelty effect that stunts
long-term interaction and conveys a lack of intelligence [7, 28].

At the same time, advancements in deep learning have enabled
the creation of data-driven neural network models that can learn
complex features given sufficient data. These have enabled various
applications ranging from temporal forecasting to image generation
[29]. While these methods have seen success in tasks such as audio-
visual perception and generation, they have remained largely un-
adopted for generating robot behaviors, where most algorithms are
based on traditional machine learning methods or rely on problem-
specific heuristics [13]. Neural networks can reduce the dependency
on domain knowledge and heuristics by learning the features di-
rectly from the input data. Recently, neural networks have been
developed for modifying high-level features in domains such as im-
ages [17] and audio [24] by editing low-level parameters in a learned
"latent" embedding space. These works used the same approach for
both images and audio, showing that neural networks can be more
domain-agnostic and generalizable than heuristic methods.

To address the problem of repetitive movements in interactive
robots, we propose to use deep learning techniques, particularly
variational autoencoders (VAEs), classification networks, and latent
space editing methods, to modify affective movement features for a
low-degree-of-freedom (DoF) robot. We first learn low-dimension
latent representations of the robot’s affective movements. These
latent representations can be used to both reconstruct the original
movement and classify the movements by the intended emotion
(happy, sad, angry).We thenmodify the valence and arousal features
of the movements by using simple arithmetic operations in the
latent embedding space. Our contributions are:
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• A classifying variational autoencoder neural network archi-
tecture that compresses expressive robot movements into a
lower-dimension latent space. The lower-dimension latent
representations can reconstruct the original movements and
are separated by emotion class.
• Amethod using linear regression to map the latent space rep-
resentations into the circumplex emotion model dimensions
of valence and arousal.
• An algorithm and interface for modifying the valence and
arousal of the movements.
• Objective and subjective evaluations to assess the validity of
this approach, in the form of neural network performance
metrics and an online survey.

2 RELATEDWORK
We review works in affective robot movements and neural network
applications for affective robotics and latent feature modification.

2.1 Affective robot movements
Many prior works in human-robot interaction (HRI) categorize
robot emotions into discrete classes according to Ekman’s six cat-
egories: happiness, sadness, anger, surprise, fear, disgust [6]. In
contrast, the circumplex model places emotion classes on the con-
tinuous dimensions of valence and arousal [22], with valence cor-
responding to positivity and negativity and arousal correspond-
ing to high and low energy. The circumplex model illustrates the
qualitative relationships between the emotions and its continuous
dimensions are conducive for quantitative operations, making it
suitable for adoption in numerical models.

2.2 Robot movement generation / modification
Movements and gestures are primary ways for robots to express
their internal emotive states, and methods for designing affective
robot movements have been extensively studied [13].

2.2.1 Generation. There are many approaches for generating robot
movements, from low-level manual trajectory editing to high-level
demonstrative techniques such as LfD [2]. These methods, however,
have several drawbacks. Editing trajectories is time-consuming and
unintuitive for non-roboticists, while directly manipulating a ro-
bot for LfD may be difficult to perform in real-time. LfD can be
performed indirectly by attaching sensors to a human demonstra-
tor, but this introduces the correspondence problem of mapping
a human movement to a non-human embodiment. This has been
addressed in many works within the graphics community, often
using heuristic mappings from human poses to animate animals or
other creatures [23, 30, 35]. Alissandrakis et al. explored heuristic
methods to address this correspondence problem for robots [1],
though their approach required extensive knowledge of the embod-
iment’s kinematics. These difficulties lead robot movements to be
largely preprogrammed and repetitive.

2.2.2 Modification. Modifying existing movements can be used to
quickly expand a robot’s library of movements, but still demands
a high level of technical knowledge. As discussed by Karg et al.
[13], most techniques used to modify affective robot movements
rely on prior heuristic knowledge of robotics and the kinematics of

a specific platform. These approaches typically adjust movement
features that have been empirically found to be important for con-
veying affect, such as gaze direction [8, 21] or speed [27]. Desai et al.
used a simulation of a quadrupedal robot with editable movement
parameters such as walking pattern, speed, and body angle to adjust
the affective quality of its gait [4]. The interface and method used
was accessible compared to manual trajectory editing techniques,
but still required a high level of domain knowledge.

2.3 Neural network applications for affective
robotics and latent feature modification

The strength of neural networks compared to heuristic methods is
their ability to learn complex and intractable data features with less
dependence on domain knowledge and manual feature engineering.
Neural networks have found success in complex applications for
affective computing, primarily in perceptual tasks such as emotion
recognition [12, 20], though someworks have explored using neural
networks for affective speech and expression generation [5, 33].

2.3.1 Affective robotics. Apart from emotion recognition, there
have been few applications of neural networks for affective robotics.
With regards to movement generation, Rodriguez et al. used a
generative adversarial network (GAN) to generate talking gestures
for a Pepper robot [25], but mostly generated random movements
that did not consider affect. In more affect-oriented work, Zhou
et al. compared hand-designed and network-learned feature costs
for editing affective handovers [38]. The results showed that the
hand-designed features were more suitable for expressing simple
styles such as happy and sad, but the network could be preferable
for complicated styles such as hesitant. This suggests that neural
networks may be a better option for more complex affect expression.

2.3.2 Latent feature modification. Autoencoders are neural net-
works that learn a latent space to compress high-dimensional data
into low-dimensional representations. The learned latent space can
also be used to modify high-level features by editing the low-level
parameters. Larsen et al. used this approach to modify discrete fea-
tures of face images, such as gender and facial hair [17]. Roberts et
al. extended this technique to modify continuous features of music,
such as note density and pitch [24]. These works used the same
general techniques for two very different domains, demonstrating
the potential to use neural networks for modifying data features
with less domain knowledge compared to heuristic methods.

The capabilities of neural networks for feature modification can
be applied to affective robot movements. This intersection of HRI
and deep learning can mitigate the novelty effect by continuously
updating a robot’s behavior library. An ever-growing repertoire
of behaviors would help imbue robots with a sense of affective
autonomy and may promote prolonged human-robot interactions.

3 NEURAL NETWORK BACKGROUND
Neural networks are the foundational models used in deep learning,
approximating a transfer function from input data to output predic-
tions. Compared to simple linear perceptrons [26], modern neural
networks use varied activation functions, convolutions, and recur-
rence in their layers to create a non-linear model between the input
and output. These layers can be arranged into various network



components such as encoders, decoders, or classifiers. Network
components can then be combined into larger architectures such as
image classifiers [16], recurrent networks [19], and autoencoders
for dimensionality reduction [10]. Neural networks are trained by
defining loss functions for the desired objectives, such as categori-
cal cross-entropy for classification or mean error for reconstruction.
Before training, the input data is split into training and testing
sets. The training set is repeatedly passed through the network to
optimize the layer parameters to minimize the loss functions and
achieve the objectives. The test set is held out and does not update
the network parameters, but is instead used to validate the model’s
performance on unseen data.

3.1 Variational autoencoders (VAE)
The primary network architecture used for this work is a varia-
tional autoencoder (VAE), which compresses input data into a latent
embedding space while also giving this space a known structure.

Autoencoders are comprised of two components: encoders to
compress the input data into a latent space, and decoders to decom-
press the latent space into reconstructions of the original inputs.
Traditional autoencoders seek to minimize the reconstruction loss,
which is defined as the difference between the input data and output
reconstruction. VAEs additionally implement a Kullback-Leibler
(KL) divergence objective, which structures the latent space into a
Gaussian distribution. β-VAE is a further modification that imple-
ments weighing between the reconstruction and KL loss, allowing
for the relative importance of the objectives to be tuned [9].

The combination of the reconstruction loss and KL divergence
ensures that decoding from a random sample in the known latent
distribution results in a valid realistic data sample. In lieu of random
sampling, the original data can also be edited in the latent space
to modify high-level features. This has enabled the use of VAEs in
various applications such as image modification [17] and musical
style transfer [24]. GANs were also considered and can extend VAEs
to achieve better results [17], but their notorious training difficulty
makes simple VAEs a better choice for our purpose.

3.2 Latent space editing to modify features
Latent space modification in the aforementioned prior works [17,
24] was achieved by calculating “attribute vectors” a⃗f in the latent
space for modifying high-level features f (e.g., hair color, musical
pitch). The vector a⃗f can be seen as a latent-space translation in
the direction of data points that contain the feature of interest.

Given a latent-space representation of a data sample x⃗0, the
high-level features are modified by adding these attribute vectors.
The degree of modification for a given feature is controlled with a
weight parameter cf .

x⃗ = x⃗0 +
∑
f

cf a⃗f

The modified latent representation x⃗ is then passed through the
decoder of the VAE to generate the new modified data sample.

In the face image modification work mentioned above [17], the
features were binary (e.g. mustache or no mustache, blonde or not
blonde). The attribute vectors were calculated as the difference
between the mean latent vectors µ⃗f of the “yes” and “no” groups.

a⃗f = µ⃗f ,yes − µ⃗f ,no
For music modification [24], features were continuous (e.g. note

density, pitch, average interval). The attribute vectors were calcu-
lated by first ranking the samples in terms of intensity (e.g. high
vs low note density) and taking the difference between the mean
latent vectors of the highest and lowest quartiles.

a⃗f = µ⃗f ,Qhiдh − µ⃗f ,Qlow

4 IMPLEMENTATION
To illustrate our approach, we implemented a system to generate
gestures expressing three emotions on a small desktop robot.

4.1 Robot platform
We used the social robot Blossom as a test platform (Figure 1)
[32]. Blossom features four DoFs of head motion achieved by four
motors: yawing through onemotor in the base, and pitching, rolling,
and vertical translation through three motors at the front, left,
and right sides of the central tower structure. The tower motors
actuate the head by reeling in cables connected to the head platform.
Blossom has few DoFs compared to other robots but is still capable
of expressive movements, making it suitable as a simple testbed.

We collected a dataset of emotive Blossom movements by asking
volunteers to puppeteer the robot to display three main emotions:
happy, sad, and angry. Movements are created with a phone appli-
cation that translates the movement of the phone directly into the
movement of Blossom’s head. The dataset consists of approximately
25 movements per emotion class, each recorded at 10 Hz. Because
neural networks require the input data to be consistently-sized,
the movements are cut down by chunking them into sliding three-
second windows every 1.5 seconds (Figure 2). The resulting dataset
thus contains over 5,000 120D samples 1.
130 (3 seconds, 10 Hz) points × 4 DoF = 120D.

Figure 1: The Blossom robot. The exterior (left) is made of
soft materials while the interior mechanism (right) consists
of a central tower structure from which the head platform
is suspended by elastic bands. The head platform has four
degrees of freedom.



Figure 2: Illustration of how the movement data is "chun-
ked" into three-second windows with 1.5-second overlaps
to be used by the network. In this example, this six-second
movement will yield three samples.

4.2 Neural network
We constructed the neural network with Keras and TensorFlow [3].

4.2.1 Classifying VAE architecture. Figure 3 shows the network
architecture which consists of a VAE with an additional emotion
classifier. The role of the VAE is to compress the 120-dimensional
input movement data into a lower-dimension latent space. The
classifier ensures that this latent space is separable by the emotion
classes (happy, sad, angry). The network is based on convolutional
layers and the parameters are detailed in Table 1. We chose convolu-
tions over recurrence due to easier training and adjustable temporal
reception [34]. The number of filters corresponds to the number of
kinematic features to detect. Kernel size controls the receptive field,
with a larger size denoting increased temporal correspondence be-
tween timesteps. Dropout was used to reduce overfitting given the
small data size. The training objectives are:
• Reconstruction loss to ensure that the output reconstructions
are identical to the input data.
• KL divergence to give the latent space a Gaussian structure.
• Classification loss to separate the learned latent space by
emotion class.

4.2.2 Latent space → circumplex model. The dimensions in the
learned latent space do not meaningfully represent human-readable
affect. In order to both visualize the gestures and allow users to
modify them, we use linear regression to map the latent space onto
the circumplex model’s valence and arousal dimensions. First, we
calculate the centroids of each emotion class in the nD latent space.
Each centroid is then recalculated by weighing each sample by the
inverse of its distance to the original unweighted centroid. We use
these weighted centroids to diminish the importance of movement
samples that may be confused with another emotion class. An
ordinary least squares linear regression model fits the nD centroids
of each emotion to their locations on the 2D circumplex model.
The circumplex model does not numerically define the emotion
locations, so they were arbitrarily chosen as:
• Happy: valence = 1, arousal = 1
• Sad: valence = -1, arousal = -1
• Angry: valence = -1, arousal = 1

After fitting the centroids to their locations, the linear regression
model is used to transform all movements into the circumplex space.

4.2.3 Latent feature modification. We use a similar approach to
feature modification as prior works (see: Section 3.2). First, the
circumplex representations of the data samples are ranked from
high to low intensity for both valence and arousal features. For each
feature f , the latent space means for the higher and lower halves are

Table 1: Network layers and parameters

Layer Parameters

Encoder

Input Movement (30x4)
Dropout 10%

Conv1D+BN 7 filters, kernel size 5
Leaky ReLU α = 0.01
Dropout 5%

Conv1D+BN 4 filters, kernel size 3
Leaky ReLU α = 0.01

Flatten –
Dropout 5%

KL Resample –

Decoder

Dense 60
Upsample1D 2
BatchNorm –
Leaky ReLU α = 0.01
Conv1D+BN 4 filters, kernel size 3
Leaky ReLU α = 0.01
Conv1D+BN 6 filters, kernel size 5
Leaky ReLU α = 0.01
Conv1D+BN 6 filters, kernel size 5
Leaky ReLU α = 0.01

Dense 30
Output Movement (30x4)

Classifier

Dropout 5%
Dense 13

Leaky ReLU+BN α = 0.01
Dropout 5%
Dense 3
SoftMax –
Output Emotion

calculated as µ⃗f ,hiдh and µ⃗f ,low Compared to the quartiles used in
prior work [24], splitting into halves was empirically found to yield
better performance. A feature’s attribute vector a⃗f is calculated as
the difference between its high and low mean vectors.

a⃗f = µ⃗f ,hiдh − µ⃗f ,low

To modify the valence and arousal of a movement, its original
latent representation m⃗0 is summed with a linear combination of
the attribute vectors and the feature weights cf .

m⃗ = m⃗0 +
∑

f ={V ,A}

cf a⃗f

4.2.4 Modification interface. We created an interface for visualiz-
ing the circumplex model and modifying the movements (Figure
4). Each point on the scatter plot represents a three-second move-
ment sample projected from the latent space into the circumplex
model using the regression parameters described in Section 4.2.2.
The emotion classes are color-coded and the projected centroids
are marked. In the graph, green is happy (h), blue is sad (s), and
red is angry (a). The user selects a movement m⃗0 and adjusts the
attribute vector weights cf using the valence (V) and arousal (A)
sliders. The projected modified movement m⃗, denoted by the large
X marker, updates in real time. In addition to directly adjusting



Figure 3: The network architecture consists of a variational autoencoder (left) with an emotion classifier (center). Once the
network is sufficiently trained to reconstruct the movements and classify the latent representations by emotion class, linear
regression is used to map the nD latent space into the 2D circumplex model (right) with the valence and arousal dimensions.

Figure 4: Movement modification interface. The emotions
are separated by color and their centroids are marked:
(h)appy is green, (s)ad is blue, and (a)ngry is red. The selected
movement m⃗0 is modified by either adjusting the (V)alence
and (A)rousal sliders or by selecting an emotion from the
(d)ropdown menu, and m⃗ denotes the location of the modi-
fied movement. In this case, the dropdown menu was used
to modify a sad movement to be happy, and the sliders up-
dated accordingly. The (p)lay button playsm⃗ onBlossom, the
(r)eset button resets the sliders, and the (B)lossom button
saves m⃗ to a file for later use.

the feature weight sliders, users can also use a dropdown emotion
selector (d) to update the attribute vector weights based on the
emotion centroids. The dropdown selector uses the valence-arousal
distance between the target emotion’s centroid and the original

movement m⃗0 to indirectly update the sliders and cf . In Figure
4, a sad movement at [0.4,-1.6] was modified to be happy, whose
centroid lies at [1,1]. Selecting "happy" from the dropdown thus
sets the valence and arousal sliders to 0.6 and 2.6, respectively, and
updates the movement m⃗ close to the target centroid. Once modi-
fied, the VAE decoder generates a three-second gesture in the form
of motor trajectories. The interface also includes buttons to play the
movements on Blossom (p), save the modified Blossom movement
to a file (B), and reset the sliders (r).

5 EVALUATION
We evaluate the performance of the neural network and the mod-
ification method using objective metrics for each of our training
objective, as well as using an online user survey.

5.1 Network parameters for evaluation
We empirically derived most of the network parameters. The test
set hold-out rate was set to 20%. The size of the nD latent space
was derived empirically. n = 40 was found to be the maximum
possible reduction while still achieving the training objectives. For
the movement reconstruction objective, using simple mean-squared
or mean-absolute error functions resulted in a lack of base motion
(yawing) and side-to-side movement (rolling). This may have been
due to augmenting the data by mirroring the left-right motions,
causing the network to ignore these DoFs and simply default to
looking straight ahead. To overcome this issue, we used a custom
loss function that weighs each movement DoF differently and uses
squared error for the front and base motor and absolute error for the
left and right motors. The weights for the front, left and right, and
base motors were empirically set to 5, 7, and 20. The KL divergence
loss was implemented according to β-VAE [9], and the classifier
used categorical cross-entropy as its loss function. During network
training, we monitored the following objectives:

• Reconstruction - Monitor loss and plot comparisons of origi-
nal and reconstructed movements for visual inspection.
• KL - Not monitored, but β-VAE recommends adjusting the
weight according to the task [9].



Figure 5: Filmstrips of a happy movement (top) modified
into sad (middle) and angry (bottom).

• Classification - Monitor accuracy and plot latent embeddings
in TensorFlow Projector to visually inspect emotion class
separation in the latent space [31].

We tuned the loss weights iteratively by increasing weights for un-
derperforming objectives, e.g. increasing the reconstruction weight
if the movement characteristics are not being preserved or increas-
ing the classification weight if the emotions are being confused. We
settled on 5, 0.1, and 7 for the reconstruction, KL, and classifica-
tion loss weights, respectively. We empirically tuned the remaining
training parameters: learning rate of 0.1, batch size of 30, Adam
optimizer [14], and mixup with a factor of 0.2 [36]. 100 epochs was
sufficient to stabilize the losses.

5.2 Online survey
We evaluated the subjective effectiveness of our method using
an online survey, which presented videos of gestures along with a
questionnaire for each gesture. The movements shown in the online
user survey were chosen by randomly selecting five samples within
the held-out test sets of the three emotion classes, resulting in a
dataset of 15 original movements. We then modify each movement
into the two other emotion classes by using the dropdown interface
described above, e.g. a happy sample was modified into both sad
and angry, as in Figure 5. This provides two modified movements
for each original movement, resulting in a survey dataset of 45
movements, 15 original and 30 reconstructed.

We had two main hypotheses. If the latent representation of a
movement is modified to lie in another target emotion space on the
circumplex model, then the modified movement’s new emotion:
H1) is consistently recognized as the target emotion.
H2) expresses the target emotion as legibly as an original move-

ment with the same emotion.
For each survey question, a video of a movement was followed

by Likert scales for how well it represented each emotion class and
a multiple choice selection for which emotion it best represented
(Figure 6). Each survey showed 30 random movements from the
original 45. We distributed the survey using Amazon Mechanical
Turk offering $2 compensation and received 100 responses.

Figure 6: Online survey questions.

Figure 7: Movement reconstruction loss (top) and emotion
classification accuracy (bottom) over 100 epochs.

6 RESULTS
The performance of this approach was evaluated using both ob-
jective metrics for the technical implementation and statistical
significance tests for the survey results.

6.1 Objective metrics of network performance
We used traditional neural network training metrics to objectively
evaluate the technical implementation. The movement reconstruc-
tion loss and emotion classification accuracy are the primary train-
ing objectives. The KL divergencewasweighed lowly as it is compar-
atively unimportant and primarily provides the Gaussian structure
for the latent space.

Figure 7 shows the training curves for the movement reconstruc-
tion loss and emotion classification accuracy. Both curves leveled
off by the end of training. The validation curves, while noisy, are



Figure 8: DoF curves for original (top) and reconstructed (bottom) movements for each emotion (happy left, sad center, angry
right). The blue, yellow, green, and red lines represent the front, right, left, and base motors, respectively. The reconstructions
have difficulty achieving the same exaggeration as the original movements, but retain the overall trajectory characteristics.

Figure 9: t-SNE representation of all of the movement sam-
ples in the latent space. The latent space is visibly separated
by emotions (happy is green, sad is blue, angry is red).

very close in performance to the training curves, suggesting that
the model did not overfit to the training set. We achieve close to 80%
classification accuracy, which is promising considering the abstract
nature of the movement data and simplicity of the network.

The reconstruction objective is further evaluated by comparing
the original and reconstructed movements. Figure 8 contrasts origi-
nal (top) and reconstructed (bottom) samples for each emotion class.
The reconstructions are less exaggerated, but capture the overall
trajectory characteristics of the original movements.

The classification objective is further evaluated with visualiza-
tion of the latent space. Figure 9 is a dimensionality reduction of
all movement samples in the latent space using t-SNE [18]. The
emotion regions are visibly separated in this space even before
applying the transformation into the circumplex space.

6.1.1 Feature sliders. The performance of the feature sliders can
also be objectively measured. A slider would ideally modify a move-
ment along only its intended feature axis (e.g. the valence slider
moves a movement sample only along the horizontal valence axis
in the interface). However, editing in the latent space may induce
coupling in the features, i.e. modifying valence may indirectly mod-
ify arousal, and vice-versa. This coupling was also present in prior
work [17], where adding mustaches also added masculine features
due to these features being highly correlated in the input dataset.

The degree of feature coupling is highly dependent upon the
emotion class and specific movement sample. To test this, each
slider was maximized individually and the unit difference vector
m̂∆ from the original m⃗0 to modified m⃗ movement was calculated.

m̂∆ =
m⃗ − m⃗0
|m⃗ − m⃗0 |

The dot product between m̂∆ and the unit feature vector (<1,0>
for valence, <0,1> for arousal) denotes the alignment of the mod-
ification direction and the intended axis, with a dot product of 1
denoting perfect alignment. This was calculated for every move-
ment in the held-out test set, and the mean dot products for all
emotion-feature combinations are presented in Table 2. All of the
results are almost 1, indicating that both sliders move primarily in
their respective axes and perform as intended.

Table 2: Slider evaluation results.

Feature
Valence Arousal

Emotion
Happy 0.999 0.996
Sad 0.995 0.989

Angry 0.995 0.992

6.1.2 Dropdown. The performance of the dropdownmenu formod-
ifying a movement towards a target emotion can also be objectively
measured. The dropdown emotion selector indirectly adjusts the
sliders by setting the valence-arousal distance from the movement
to the target emotion’s centroid as the slider values. As visualized
on Figure 4, the effectiveness of this method can be calculated by
measuring the distance between the final modified movement m⃗
and the target emotion centroid (h in this example), with a distance
of 0 denoting ideal performance. This distance was calculated for
every movement in the held-out test set, and the mean distances for
each original-target emotion combination are presented in Table 3.

Modifying a movement towards its original emotion yields the
best performance. For cross-emotion modification, sad→happy per-
forms the best, followed by angry→happy and happy→sad. Inter-
estingly, happy and sad both have difficulty modifying into angry.

6.2 Survey
In addition to the above, we analyzed the subjective metrics col-
lected in the survey in light of the hypotheses laid out above.



Table 3: Dropdown evaluation results. Bolded values indi-
cate best performance for each original emotion class. Itali-
cized values indicate second-best performance.

Target emotion
Happy Sad Angry

Original emotion
Happy 0.126 0.353 0.507
Sad 0.237 0.098 0.328

Angry 0.317 0.405 0.193

6.2.1 H1. For the first hypothesis, there should be no difference in
the recognition accuracy for the target emotions between the origi-
nal and modified movements. For example, movements modified to
be happy should be recognized as happy with the same accuracy
as original happy movements. TOST (two one-sided tests) equiv-
alence tests were performed between the original and modified
movements for each target emotion. Given the range of the accura-
cies (0 for wrong, 1 for correct), the equivalence test α was set to
0.1. The results (Table 4) show that H1 is supported (p < 0.05) for
happy→sad and sad→angry and implied (p < 0.1) for angry→sad,
but is not supported for the other modifications.

Table 4: Mean emotion recognition accuracies and equiva-
lence test p-values (italicized). Bolded p-values support H1.

Target emotion
Happy Sad Angry

Original emotion
Happy 0.59, –––– 0.63, 0.03 0.18, 0.13
Sad 0.44, 0.91 0.66, –––– 0.21, 0.01

Angry 0.44, 0.91 0.61, 0.08 0.24, ––––

6.2.2 H2. For the second hypothesis, there should be no difference
in the legibility scores for the target emotions between the original
and modified movements. For example, the legibility scores for
movements modified to be happy should not be significantly differ-
ent than the scores for original happy movements. The legibility
score is the Likert score for the target emotion, e.g. the legibility
score for a sad movement modified to be happy would be the Likert
score for the happy slider in Figure 6. Equivalence tests between
the original and modified movements for each target emotion were
performed. Given the range of the Likert scores (1-5), the equiva-
lence test α was set to 0.2. The results (Table 5) show that H2 is
supported (p < 0.05) for all modifications.

Table 5: Mean emotion legibility scores and equivalence test
p-values (italicized). Bolded p-values support H2.

Target emotion
Happy Sad Angry

Original emotion
Happy 3.33, –––– 3.42, 0.02 2.07, 0.02
Sad 2.77, 0.02 3.27, –––– 2.27, 0.02

Angry 2.81, 0.02 3.54, 0.02 2.26, ––––

7 DISCUSSION
The objective results show that the network achieves the learning
goals well: the reconstructions look similar to the original move-
ments but with less exaggeration. This is in line with challenges

reported for generative networks in other domains [37]. It was par-
ticularly interesting that the network and regression model were
able to map the movements into the circumplex space with minimal
domain knowledge apart from the emotion centroid locations. Qual-
itatively, valence corresponds to looking upwards or downwards
while arousal corresponds to exaggeration.

The subjective results show that H2 is supported for all modifi-
cations, but H1 is only partially supported. Using the dropdown
menu for automatic modification may have been a limiting factor,
as evidenced by its mediocre cross-emotion performance (Table
3). Manually moving the sliders while monitoring the output for
fine-tuning may have yielded better modified samples.

The subjective results also imply that not all emotions are equally
conveyable. Anger is consistently recognized below the chance level
of 0.33, implying that Blossom may have difficulty conveying anger
compared to happy and sad. When creating the movements, anger
was the most ambiguous while sad movements were usually a slow
lowering of the head. This shows the relationship between a ro-
bot’s expressive capabilities and its embodiment, which renders cer-
tain emotions harder to convey. Movements modified to be happy
scored considerably lower in terms of both accuracy and legibility
than their original counterparts. This implies that this modification
method may not be able to retain some qualities of hand-crafted
movements. These observations highlight the difficulty in quanti-
fying emotions, especially with the simple circumplex model.

Plans for future work include a usability study for the interface
and testing with other robots to evaluate generalizability. The study
would assess the ease-of-use of the interface and address the issues
with the automated modification. We would also test the method
using robots with more complex modalities such as sounds or face
gestures. These modalities may better convey emotions that are
difficult to express through movements alone. Additionally, we
could choose to imbue affect into non-emotive or task-oriented
gestures such as hesitating or signaling. We also want to explore
using other starting points in the latent space, such as neutral
movements or random samples, to generate new gestures.

8 CONCLUSION
We presented a method for modifying affective movements for an
expressive robot using neural networks. Using a dataset of hand-
crafted movements, we trained a classifying VAE to learn a latent
space to compactly represent the movements and classify them by
their intended emotions. We then used linear regression to map the
abstract latent space into the comprehensible valence and arousal
dimensions on the circumplex emotion model. Applying simple
arithmetic in the latent space enables us to modify the valence and
arousal of the movements. We evaluated this approach with objec-
tive and subjective metrics which showed that the method performs
well along learning objectives and to some extent supported the
hypotheses that the modified movements are comparable to the
originals in terms of recognizability and legibility. Compared to
heuristic approaches for creating movements, we used little domain
knowledge of kinematics and robotics. This suggests that using neu-
ral networks for generating robot behaviors is more generalizable
and accessible, enabling faster and easier methods for expanding a
robot’s behavior library for prolonged interaction.
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