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Abstract—Social robots use gestures to express internal and
affective states, but their interactive capabilities are hindered by
relying on preprogrammed or hand-animated behaviors, which
can be repetitive and predictable. We propose a method for auto-
matically synthesizing affective robot movements given manually-
generated examples. Our approach is based on techniques
adapted from deep learning, specifically generative adversarial
neural networks (GANs).

Index Terms—social robot; robot movement; deep learning;
generative adversarial networks

I. INTRODUCTION

Robots designed for social interaction are becoming more
common in spaces such as homes and retail environments. In
these contexts, they use movements and gestures to express
internal and affective states. However, these behaviors are
often difficult to create and are largely preprogrammed or
animated by hand, resulting in repetitiveness that can lead to
diminished interest over time [1, 3].

There have been some techniques to automatically generate
robot movements based on known heuristics and knowledge
of the robot’s embodiment [4], but these are not easily gener-
alizable to different robots. At the same time, advancements in
deep learning have enabled the creation of data-driven models
for applications ranging from temporal forecasting to image
modulation and generation [6]. While these deep learning
methods have seen success in robotic perception, they have
remained largely unadopted for generating robot behaviors.

We propose a method to automatically generate robot move-
ments that express affect by using movement exemplars and
techniques from deep learning, specifically generative adver-
sarial networks (GANs) [2]. We use a cycle-consistent GAN
(CycleGAN) [8] to simultaneously generate robot movements
from human movements and evaluate the mapping by using
examples of hand-coded robot movements.

II. IMPLEMENTATION

The CycleGAN architecture shown in Figure 1 uses a pair of
GANs in a cyclic configuration to perform translation between
movement spaces. We use multiple binary CycleGANs, one
for each emotion class, due to the difficulty we encountered
in creating a single CycleGAN that can generalize across
multiple emotion classes.

Fig. 1. CycleGAN architecture for automatic affective gesture generation. The
path for the forward cycle (human→robot) is outlined by the dotted line. A
real human movement sample is passed through the forward generator (human
encoder and robot decoder) and generates a corresponding robot movement.
This generated robot movement is passed through both the robot discriminator
which provides the robot discriminator loss and the backward generator (robot
encoder and human decoder) to reconstruct the human movement input which
provides the human cycle-consistency loss. The network also performs the
backward cycle (human←robot) in parallel.

The inputs to the network are robot and human movements
that share common emotion class labels. We currently use
three classes: happy, sad, and angry. The robot dataset consists
of approximately 10 movement samples per emotion class.
The human dataset was sourced from 30 non-professional
actors and consists of over 4,000 movement samples of various
emotive actions [5].

The objective is for the CycleGAN to use a source human
movement and generate a robot movement which matches the
affective label of the human movement. This is measured by
how convincingly real the generated movements are while
ensuring that the network is able to reconstruct the input
movements. For the forward cycle (human→robot, outlined in
Figure 1 with the dotted line), the forward generator (human
encoder and robot decoder) uses a source human movement
to generate a robot movement. This generated movement is
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Fig. 2. Comparison of real and generated robot movements. Kinematic
features (speed and range for each DOF, posture, height, and yaw-pitch-roll,
resulting in a 13-dimension feature vector) for each movement sample are
calculated and plotted along their two principal components.

then passed through a discriminator to determine if it is real
or fake. This discriminator computes a loss function LD,fwd.
The generated movement is also passed through the backward
generator to reconstruct the human movement (computing a
human cycle-consistency loss, LCC,fwd). LCC,fwd is weighed
by a factor λfwd and added to LD,fwd to define the combined
forward cycle loss Lfwd = LD,fwd + λfwdLCC,fwd. The
backward cycle (human←robot) is trained concurrently using
a similarly structured loss Lbwd, and the forward and backward
cycle losses are combined to define the entire network loss L.

L = Lfwd + Lbwd

= LD,fwd + λfwdLCC,fwd + LD,bwd + λbwdLCC,bwd

The network is trained with categorical cross-entropy and
mean squared error loss functions for the discriminator and
cycle-consistency losses, respectively. After training, robot
movements are generated by passing human movement sam-
ples through the forward generator.

III. RESULTS AND FUTURE WORK

To evaluate this approach, we used a Blossom robot [7], an
open-source social robot which features 4 degrees-of-freedom
(DOFs) through its head platform: pitch, roll, yaw, and vertical
translation. Blossom has few DOFs compared to other robots
but is still capable of expressive movements, making it suitable
as a testbed for this method.

The affective quality of the generated robot movements can
be objectively evaluated through heuristic kinematic measures
such as movement speed and range [4]. As shown in the
principal component analysis of these features in Figure 2, the
generated happy and sad movements cluster fairly well along
the real movements, but the generated angry movements are
clustered more closely towards happy than anger. Notably, the
real angry gestures were also widely dispersed.

Perceptual metrics can be used to subjectively evaluate the
generated movements. As shown in Figure 3, the intended

Fig. 3. Sequences of generated happy (top) and sad (bottom) movements.

emotions are fairly discernible between classes. We plan to
evaluate the results through a user study that compares the
real and generated movements in terms of naturalness and how
well the intended emotion is conveyed.

Future plans for this work are focused on improving the
network implementation and generalizability. Rather than an
ensemble of binary CycleGANs with labeled data, the ideal
implementation would be a single CycleGAN that could
translate with either multiclass or unlabeled data. We also plan
to explore different modalities for translation. For example,
a given musical sequence could be used to generate a robot
movement, while a user-generated robot movement could be
used to create an appropriate musical cue. Finally, this method
can be evaluated on other robots with different embodiments.
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