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Abstract

We present a systematic survey of computational research in human-
robot interaction (HRI) over the past decade. Computational HRI is
the subset of the field that is specifically concerned with the algo-
rithms, techniques, models, and frameworks necessary to build robotic
systems that engage in social interactions with humans. Within the
field of robotics, HRI poses distinct computational challenges in each
of the traditional core research areas: perception, manipulation, plan-
ning, task execution, navigation, and learning. These challenges are
addressed by the research literature surveyed here. We surveyed twelve
publication venues and include work that tackles computational HRI
challenges, categorized into eight topics: (a) perceiving humans and
their activities; (b) generating and understanding verbal expression;
(c) generating and understanding non-verbal behaviors; (d) modeling,
expressing, and understanding emotional states; (e) recognizing and
conveying intentional action; (f) collaborating with humans; (g) nav-
igating with and around humans; and (h) learning from humans in a
social manner. For each topic, we suggest promising future research
areas.

A. Thomaz, G. Hoffman and M. Cakmak. Computational Human-Robot
Interaction. Foundations and TrendsR© in Robotics, vol. 4, no. 2-3, pp. 105–223,
2013.
DOI: 10.1561/2300000049.



1
Introduction

The field of human-robot interaction (HRI) is expanding and matur-
ing. At the time of writing, dedicated publications on HRI and social
robotics research include two special-interest journals and three con-
ferences, in contrast to a single conference and no dedicated journals in
2005. In addition, HRI is a research topic which is increasingly solicited
and included in the broader robotics community.

The goal of this survey paper is to provide a systematic overview
of the field of HRI over the past decade (from 2005 to 2015), with a
focus on the computational frameworks and algorithms currently used
to enable robots to interact with humans. Two influential surveys of
the field were published in 2003 and 2007 [Fong et al., 2003, Goodrich
and Schultz, 2007], and a book chapter surveyed part of the HRI liter-
ature in 2008 [Breazeal et al., 2008]. This survey starts roughly where
Goodrich and Schultz [2007] left off, covering what has proven to be
the most active period of HRI research thus far.

This paper’s focus, however, is different from the previous surveys.
As the research area has developed, we have identified a lack of a
systematic survey focusing specifically on computational HRI research.
This subfield of HRI, which includes algorithmic and systems-oriented
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work is distinct from the large body of research dealing with the
empirical, psychological, cultural, and user-interface aspects of the
field. So far, there has not been a comprehensive survey article covering
computational HRI. In addition, to the best of our knowledge, there
has never been a systematic review of the literature in an attempt to
represent the bibliometric trends, balance, and distribution of work in
HRI. This paper aims to fill these gaps.

1.1 Methodology

While no survey paper can argue for exhaustiveness, we employed a sys-
tematic methodology when selecting for inclusion. Our search covered
the entire archive of the top-rated journals and refereed conference pro-
ceedings which publish work on HRI and social robotics. This included
traditional robotics journals and conferences, one human-computer in-
teraction conference, and specialized HRI and social robotics venues.
In total, we surveyed twelve venues:

• IEEE Transactions on Robotics (T-RO)

• International Journal of Robotics Research (IJRR)

• Autonomous Robots (AuRo)

• Journal of Human-Robot Interaction (JHRI)

• International Journal of Social Robotics (IJSR)

• Robotics: Science and Systems (RSS)

• International Conference on Robotics and Automation (ICRA)

• International Conference on Intelligent Robots and Systems
(IROS)

• International Conference on Human-Robot Interaction (HRI)

• International Symposium on Robot and Human Interactive Com-
munication (RO-MAN)
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• International Conference on Social Robotics (ICSR)

• ACM Conference on Human Factors in Computing Systems
(CHI)

For these twelve venues, we considered the entire archive published
since January 2005 and selected papers based on pre-defined inclusion
criteria, described in the following section.

1.1.1 Inclusion Criteria

Delineating the research which contributes to the technologies underly-
ing socially interactive robots is a non-trivial question of field boundary
and demarcation. With an eye on the grand challenge of building au-
tonomous socially intelligent robots, our goal was to specifically cover
computational, i.e., algorithmic and robotics-oriented (as opposed to
psychology-oriented), and synthetic (as opposed to descriptive or infer-
ential) research. This excludes all user studies only measuring human
responses to robot behavior or designs. Of the computational papers
considered, we further limited the survey by including only work that
has a clear element of robotics and a clear element of social interaction.

In other words, our rule-of-thumb for inclusion requires that both
the social and the computational should be present in the research, and
that the intended application of the work is in robotics. To formalize
this, we defined several inclusion and exclusion criteria, organized by
type and topic of the research papers we considered:

• Perception of Humans — There is a large body of work in
the robotics and HRI literature concerned with the perception
of humans. Out of those we include only the subset of papers in
which the perception was geared towards, or focused on, social
interaction. We either exclude or only briefly mention work that
is aimed at detecting and tracking people in the environment
generally, without specific application to HRI, such as perception
for situational awareness or context understanding.
There are a number of venues concerned with computational per-
ception, such as the Conference on Computer Vision and Pat-
tern Recognition (CVPR) and the International Conference on
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Computer Vision (ICCV), to name two. The fact that we did
not survey these venues inherently narrows our scope to research
aimed at robotics applications and at HRI in particular. This
means that we do not survey some of the core computational
perception work, even though it has undoubtedly affected the
field of HRI significantly.

• Learning — Machine learning also constitutes a large part of
robotics research. We focus on the subset of papers in which learn-
ing happens either with an eye on social interaction or directly
through social interaction. We do not include work merely treat-
ing human data as a learning database for inference, even if it is
geared toward robotics.

A similar point can be made for foundational work in machine
learning as we made earlier with respect to computational per-
ception. Research in venues such as the International Conference
on Machine Learning (ICML) or Neural Information Processing
Systems (NIPS) is not represented in this survey, even though
much of it has clear relation to the work discussed herein.

• Collaboration, Navigation, and Manipulation — In
human-robot collaboration, navigation, and manipulation papers,
we focus on those that include a distinctly social aspect. This
means that we exclude a large body of efficiency-centric collab-
orative robotics work found in industrial robotics research. We
do include a few selected works on collaborative manipulation, in
particular those that relate to intentionality.

• Autonomy — As a rule, we include only research in which the
robot has at least some autonomy, or that is concerned with de-
veloping methods that serve robot autonomy. This excludes most,
if not all, work with the Wizard-of-Oz (WoZ) methodology, with
a few exceptions, described below.

We cannot claim that the boundaries of this survey are crisply
delineated. In fact, it would be fair to say that more papers were
borderline for inclusion than clear-cut. For example, we include some
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purely empirical studies which are designed with computational ques-
tions in mind, or have clear implications for autonomously interactive
robotic systems. We include such work in particular when it helps
frame the discussion of subsequent computational research.

Overall, we identified, read, and considered 926 papers out of the
original several thousands of papers published in the above-mentioned
venues in the survey time frame. Our criteria narrow this list even
further, resulting in a total of 375 papers representing the state of the
art in computational HRI.

1.2 Overview

HRI is an interdisciplinary field with roots and connections in several
more established disciplines of robotics and computer science. This is
reflected in the categorization of the work surveyed here. Each section
can be viewed as the application and extension of robotics research to
the socially interactive context.

For example, techniques from the field of robot perception have
been adapted and extended to specifically perceive information used for
social interaction, and in particular to reason about human intention.
Similarly, whereas the broader field of robotics studies kinematics and
motion planning, a socially interactive robot needs to view these issues
in the context of nonverbal communicative behavior. Motion planning
is made socially aware in order to communicate intents and create
bonds. The broader topic of machine learning for robotics gives rise to
research in socially-guided robot learning, building on human models
of tutelage and instruction. Similarly, the long tradition of robot navi-
gation is seen through a new lens of social navigation, both accounting
for human social needs and expressing social signals during navigation.

Inspired by this perspective, Figure 1.1 shows an overview of this
paper. The paper flows from fundamental robot capabilities, such as
perception of human activities, expression of verbal and nonverbal be-
havior, and the role of emotion models in HRI, to higher-level social
robot skills, including reasoning about intentions, collaboration, navi-
gation, and learning.
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1.2.1 Foundations

Sections 2–5 cover basic capabilities and modalities of interaction. 
These core behaviors are precursors to successful interaction with hu-
mans.

The first of these skills, covered in Section 2, is the ability to per-
ceive humans in a social context. The computational issues arising from 
this goal include a number of challenges: First, a robot might need to 
recognize a human social partner, find their face, and possibly recognize 
their identity. Then, a robot could recognize gestures, track the focus 
of the human’s attention, identify activities, and detect the human’s 
engagement or disengagement with the robot.

Next, Section 3 covers systems and methods aimed at generating 
and understanding verbal expression, geared toward human dialog with 
social robots. This includes a variety of technical challenges, includ-
ing optimizing speech content, expressing task and domain knowledge, 
understanding context, and grounding verbal content in the physical 
world. We also cover work that looks at paralinguistics, such as the 
tone of voice (vocalics) and the timing of speech acts.

Section 4 considers nonverbal behavior. To support social interac-
tion, robots need the ability to generate and understand the variety of 
nonverbal behavior exhibited in human communication. This includes 
the detection and generation of body movements (kinesics), pointing 
gestures, speech-accompanying gestures, and gaze, as well as space and 
territory management (proxemics), and touch interactions (haptics).

A central aspect of human nonverbal behavior is the perception and 
generation of emotional behaviors and signals. Work on this topic, 
covered in Section 5, skirts the boundary between Affective Comput-ing 
and HRI, including computational models representing emotional states 
and the use of emotion for robot self-regulation. We also cover 
frameworks and methods for generating emotion expression and tech-
niques for detecting human emotional states in the context of human-
robot social interaction.
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1.2.2 High-level Competencies

In the second portion of this survey we discuss social behaviors that
build on the skills covered in the first portion. This begins with the ex-
pression and recognition of intentional behavior. Humans have natural
tendency to parse the world on intentional boundaries. Therefore, un-
derstanding, predicting and reasoning about intentions is fundamental
to interaction. Section 6 surveys work concerned with the automatic
detection, classification, and recognition of human intention. This in-
cludes work on Theory of Mind capabilities for robots, on the prediction
of human activities as intentional agents, and on mechanisms to achieve
joint attention. This section concludes by looking at how robots can
generate actions that communicate intent in an appropriate way, based
on animation principles and legibility optimization. The capacity to un-
derstand and communicate intentional action then serves as the basis
for the last three sections covering the social behaviors of collaboration,
navigation, and learning.

Section 7 includes research focused on human-robot collaborative
activities, a highly active subfield of computational HRI. In order to col-
laborate successfully with a human, a robot needs to adjust its motion
planning algorithms, optimizing for social aspects of the movement.
A large body of work deals with computational challenges in embod-
ied shared activities, including collaborative planning and scheduling,
while others consider timing, anticipation, and team fluency. Finally
we look at two highly-studied instances of human-robot collaboration:
object handovers and collaborative manipulation of a shared object.

All of the above sections are equally applicable to stationary and
mobile robots. However, mobile robots have unique challenges asso-
ciated with the social aspects of their use of space. Section 8 surveys
research on socially-aware robot navigation and mobility. In many ways
this is a particular case of collaborative behavior. First, mobile robots
need to recognize and generate intentional behavior. Then, there are so-
cial aspects of the navigation itself, including approaching people, mov-
ing around people, and accompanying humans along their walking path.

Finally, Section 9 looks at machine learning in the context of HRI,
including robot learning guided by humans. This capacity also builds
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on the robots’ ability to represent and reproduce intentional behavior in
order to help human teachers give better instruction. The section covers
the particular features of human-generated machine learning input as
well as human-inspired learning techniques, such as scaffolding. In this
section, we stress the importance of social signals in robot learning,
enabling a more transparent learning process by the robot.



2
Perceiving Humans for Social Interaction

In order to interact with a person socially it is necessary to perceive
them, both to initiate the interaction and then to maintain it. As a
result, the perception of humans for social interaction is a fundamental
computational challenge for many HRI systems. A social robot has to
find people in the environment, distinguish between different people,
parse their actions and activity, and estimate their engagement.

The application requirements of HRI distinguish this computa-
tional challenge from that of the general field of Computer Vision,
or more broadly Computational Perception. Perception in an HRI
context requires parsing dynamic, incremental, real-time, semantically
rich, and often multi-party interactions. Databases of images and
video, which are the cornerstone of Computational Perception research,
have little in common with scenarios of a human interacting with a
robot.

To support the goal of perceiving humans, HRI systems use a com-
bination of sensors and modalities, including vision, audio, and touch.
The reader is encouraged to refer to Yan et al. [2014] for a structured
review of sixteen social robots, organized by their sensing capabilities,
the applications they serve, and the perception tasks they achieve.

115



116 Perceiving Humans for Social Interaction

In the HRI literature, we found three overarching topics of com-
putational human perception: recognizing humans and their features,
parsing their actions, and detecting engagement for interaction.

2.1 Recognizing Humans: Features, Faces, and Gaze

The first precursor to a robot’s ability to interact with a human is
the ability to recognize humans and understand aspects of them that
may influence the interaction. This has been a topic of HRI research
for many years, with much of the recent work in the field dealing with
estimating human poses and activities, detecting their face and facial
features, and determining their gaze.

Several pieces of work are devoted to recognizing humans and their
body pose from a static vantage point. McColl et al. [2011] use a combi-
nation of a thermal camera and a time-of-flight (ToF) range camera to
segment the head and lower arms and detect their configuration, even
in the presence of intersecting body parts. Yang et al. [2007] propose
describing a human with features encoding the angular relationship be-
tween their body parts. A feature vector is then mapped to a codeword
of Hidden Markov Models (HMMs) and used for real-time recognition
of whole body gestures in an HRI context. Ho et al. [2005] also use
HMMs, but to model and recognize a human’s motion. Temporal Dif-
ference (TD) Learning is applied to adjust the tracking performance
online, allowing the system to track and recognize hand motions of a
walking person.

For mobile robots to interact, they have to track a person’s position
and angle with respect to them. This has often been achieved with
the use of laser range finders [Svenstrup et al., 2009]. In one example,
Panangadan et al. [2010] track the movement of people in both indoor
and outdoor environments using laser range finders. The tracking data
are then segmented into sequences arising from distinct activities by
representing the tracks as probability distributions. This allows for the
classification of these activities. Luber and Arras [2013] detect and learn
socio-spatial relations between individuals and are able to track group
formations using 2D range data.
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While the above works are all focused on finding and tracking hu-
mans, others try to determine specific attributes about the human that
might impact an interaction. Handri et al. [2011] detect the age and
gender of humans based on their motion. Their system uses image and
video processing, 2D Discrete Wavelet Transformation and 2D Fast
Fourier Transformation to extract human motion features. Then, the
AdaBoost algorithm is used for classifying gender and age based on
spatio-temporal information. Carcagnì et al. [2014] present a different
approach for gender prediction in real time. They make use of commer-
cial face tracking software and use an SVM to classify gender.

In addition to tracking and recognizing the poses and attributes of a
human in general, a social robot can use face recognition for the purpose
of recognizing a particular human, in order to have a user-specific inter-
action. Again, in contrast to the core face recognition research commu-
nity, the papers surveyed here are concerned with real-time recognition
in realistic conditions of interactive robotic deployments. For exam-
ple, Aryananda [2009] describes an incremental and unsupervised face
recognition system that was evaluated in an eight-day-long experiment
in which a robot autonomously detected, tracked, and segmented face
images during spontaneous interactions with over 500 passersby.

Computational methods for HRI face recognition vary. Hanheide
et al. [2008] links interactive introduction of interlocutors with an on-
line learning face classification scheme based on active appearance mod-
els. In Pateraki et al. [2009], a mobile robot finds humans by locating
and tracking faces and facial features using Least Squares Matching
(LSM), an approach that can overcome the problems of variable scene
illumination and the head in and off-plane rotations. Raducanu and
Dornaika [2010] track and recognize facial expressions exploiting facial
action parameters estimated by an appearance-based 3D face tracker.
The complexity of the non-linear facial expression space is modeled
through a manifold, the structure of which is learned using Laplacian
Eigenmaps. The projected facial expressions are then recognized based
on a Nearest Neighbor classifier.

Related to face tracking, a social robot can benefit from interpreting
the gaze direction of a human interlocutor. Michalowski and Simmons
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[2006] track people and their gaze using vision and laser range data.
Their approach classifies people using a categorical model of attention:
present (far from the robot), attending (idling closer to the robot),
engaged (next to the robot), and interacting (actively participating in
an exchange with the robot). Work related to attention recognition will
be discussed more in detail in Section 6.2 in the context of establishing
joint attention in a human-robot interaction.

2.2 Activity and Gesture Recognition

Interactive scenarios for social robots require not only the ability to
find and track humans, but also to understand their gestures and ac-
tions. One aspect of this challenge is the recognition of whole-body
activities and gestures. Prior to the availability of high-accuracy low-
cost skeleton tracking using commercial depth sensors, a large portion
of the research was devoted to motion and pose tracking from tradi-
tional sensors. Jenkins et al. [2007], for example, perform monocular
tracking and action recognition for movement imitation from partial
observations at interactive rates.

In recent years, out-of-the-box skeletal trackers using RGB-D cam-
era systems are used most often. Anjum et al. [2014] uses a Kinect
sensor as input for an activity recognition classifier, with a basic SVM
classifier that achieves near perfect accuracy on a closed set of eight
activities. Sensor fusion is another approach for making recognition of
activities in real environments more robust. For example, Teo et al.
[2012] uses language descriptions as additional input alongside video
for activity recognition. This helps disambiguate situations that are
visually similar. Burger et al. [2012] use HMMs to recognize gestures
for robot commands, fusing this with speech recognition. In Droeschel
et al. [2011b], a combination of two laser range finders (LRFs) with one
RGB camera and one time-of-flight camera are employed to detect joint
attention nonverbal gestures. The LRFs suggest candidates for humans
and the camera verifies these candidates. Both cameras are used to de-
tect gestures, including gaze and pointing gestures. For the latter, the
authors use HMMs modeling the various stages of a deictic point.
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Hand gestures are a particularly important aspect of social inter-
action and are addressed separately in computational HRI. Using a
monocular camera, Chuang et al. [2011] use a Bag-of-Words method
to detect and recognize hand posture based on a so-called Appearance
and Relative Position Descriptor in combination with a spectral em-
bedding clustering algorithm. They then use Continuously Adaptive
Mean Shift (CAMshift) to track hand motion in real time. McKeague
et al. [2013] use sensor fusion (depth and RGB) to track hands in
crowded environments in real time. A Monte-Carlo update process
reduces false positives and an online skin color learning algorithm
copes with varying skin color, clothing, and illumination conditions.

To encourage HRI-focused activity recognition, Chrungoo et al.
[2014] released an annotated RGBD human-robot interaction dataset
consisting of 18 unique activities including ten stylized gestures and
eight conventional activities of daily living. The dataset includes both
communicative and non-communicative actions.

2.3 Detecting Engagement

The above-mentioned activity and gesture recognition research pre-
supposes that the robot knows the human is trying to interact with it.
However, consider a robot in an office lobby or a shopping mall. Such a
robot should not assume that every human it detects wants to interact.
Hence, another challenge for social robots is to detect the human’s in-
teraction engagement, both initially and in an ongoing fashion. Ideally
this should be framed as a more generic recognition problem than that
of recognizing a particular gesture or activity. This way the person does
not have to make a specific gesture or use a speech command to initiate
an interaction.

In Feil-Seifer and Matarić [2005], a robot selects a person for
interaction based on the perceived desire of humans to interact with
it. They use a multimodal approach, tracking legs with a laser range
finder, and gestures with a camera, then supplementing these sensors
with speech recognition. Finke et al. [2005] use sonar sensors to recog-
nize human movements making the assumption that people interested
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in interacting will approach the robot. The robot distinguishes objects
from humans by assuming that only people move by themselves and
a Hidden Markov Models approach detects the approach movements
correctly in approximately 80% of the experimental cases.

As opposed to recognizing a particular behavior, Lee et al. [2011]
use human-robot contingency as an indication of engagement. Using
motion-based features, their method can classify when a nearby hu-
man has made a contingent response to the robot’s actions with 79%
accuracy. Lee et al. [2012] additionally incorporate an audio signal, and
Chu et al. [2014] demonstrate this multimodal contingency detection
model working in real-time.

In a reverse approach, Torta et al. [2012] study how to attract
the attention of a human, comparing different modalities (eye contact,
blinking, waving, speaking). They find that sound generates the fastest
reaction time, whereas trying to establish eye contact is slowest. In
Torta et al. [2015] the authors present a follow-up study that shows
that only using speech is the fastest way to attract a human’s attention,
even compared to a multimodal approach of using speech and actions
combined.

Once engagement is initiated, Rich et al. [2010] propose a compu-
tational model and score for recognizing strength of continued engage-
ment by combining four types of events: directed gaze, mutual gaze,
conversational adjacency pairs, and back channel communication.

In summary, research in computational methods for perceiving humans
in recent years focuses on three challenges. The first is generally detect-
ing people and their features. This includes finding them; estimating
their pose, gender and age; detecting their faces and extracting gaze
information. Once a person is detected and characterized, a robot can
classify their activity in real time for interaction. This is often done
using skeleton tracking and sensor fusion methods. Finally, in order to
successfully use the capability of activity recognition, a social robot has
to also know which person is attempting to interact with it and whether
they are still interacting. This motivates a third area of computational
HRI perception research: detecting initial and ongoing engagement.
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The rich literature of perceiving humans for human-robot inter-
action is quite mature and builds on a longer tradition of Computer
Vision and Computational Perception. Most of the work on parsing the
perceived human’s activity focuses on single persons and a natural ex-
tension for future research is to parse activities of more than one person
interacting with the robot. This includes the perception of people who
are not interacting with the robot, but are of interest to the robot’s
performance. Furthermore, while much field-tested research has been
conducted in public settings, there has been little non-laboratory work
on the perception of humans in more private environments, such as the
home or the office.
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Verbal Communication in Social Robots

Verbal communication is a key aspect of human social behavior and
is therefore critical for human-robot interaction. Speaking enables the
transfer of semantically rich information between the robot and its hu-
man interlocutor. The general challenge of speech recognition and pro-
duction has resulted in vast areas of research in the general computer
science, artificial intelligence (AI), and human-computer interaction
(HCI) literature. In this section, we focus on the computational meth-
ods and systems specific to verbal communication for social robots.

Language is often related to application and context. Over the
years, speech systems have been used in HRI across a large number of
scenarios, including cooking instruction [Torrey et al., 2007], task direc-
tions [Namera et al., 2008], storytelling [Al Moubayed et al., 2009], city
exploration [Weiss et al., 2010] and tour guidance [Shiomi et al., 2010].
There are verbally communicative robots for snack delivery [Lee et al.,
2010], in hospitals [Raman et al., 2013], for furniture assembly [Tellex
et al., 2014], in the home [Lohse et al., 2008], and as receptionists [Salem
et al., 2013b].

What all of these systems have in common is that the content of the
robot’s language is tied to its physical embodiment and environment.
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Speech acts need to coordinate with the robot’s physical movement
in space (whether that movement is functional or expressive). At the
same time the language used by the robot should correctly ground
spatial references to the robot’s environment. These considerations are
reflected in the research surveyed below.

Regarding the asymmetry of language parsing and production: In
humans, language recognition and generation processes are tightly cou-
pled. In robots, generating speech—once the robot has a string of text—
is relatively easy with text-to-speech engines. Recognizing speech is
much more challenging, as it involves additional uncertainty on the in-
put channel (noise, accents, timing) beyond the semantic content. As a
result, many robots speak but do not understand spoken language. For
example, the robot in Torrey et al. [2007] uses text-to-speech to guide
the user through a task, but the human types in their input; similarly,
Weiss et al. [2010] use speech and image as output modalities, but ges-
ture and touch screen as inputs. This asymmetry can be an issue in the
social relationship between humans and robots, as people might expect
a social robot that generates speech to be able to recognize speech of
similar complexity. In this section, we cover these two aspects of speech
separately: first the generation of verbal behavior, then its recognition.

3.1 Generating Verbal Behavior

There are two primary computational challenges in generating verbal
behavior for social robots: (1) generating the content of the speech
and (2) generating the delivery parameters of the speech. The first
challenge includes modeling the task and the interaction domain in
order to produce the content of speech. The second challenge consists
of paralinguistic properties, coordinating with nonverbal behavior, and
the overall timing of the speech acts with respect to the robot’s other
actions.

3.1.1 Modeling Domain Knowledge for Speech Production

Speech content depends on the task the social robot is performing and
the domain or context in which it is intended to perform. Researchers



124 Verbal Communication in Social Robots

have employed a variety of frameworks to model this knowledge for
speech production. Examples include employing a customized variant
of the Artificial Intelligence Mark-up Language (AIML) for question-
answering [Torrey et al., 2007], or using Attempto Controlled English
(ACE), a subset of standard English with restricted lexicon, syntax and
semantics, formally described by a set of construction rules. Kirk et al.
[2014] use the latter to paraphrase incomplete or ambiguous natural
language instructions and ask questions about missing information to
complete the task.

Often language can be tailored to the task at hand. For example,
the verbal production system in the Okuno et al. [2009] shopping mall
robot generates verbal route directions using a “skeletal description”
of sentences, each involving an action (e.g., go straight) relative to a
landmark (e.g., a distinct building), for example “turn left at the bank”.

3.1.2 Determining the Content of Speech

A key difference between human-robot dialog versus general AI dialog
systems is that producing the correct speech content in an HRI scenario
is dependent on the physical surroundings, the collaborative situation
as detected by a variety of sensors, and the human’s spatial behavior.

In the context of human-robot collaborative tasks, Tellex et al.
[2013] created a system to generate clarification questions for disam-
biguation, based on an information theoretic strategy. In Tellex et al.
[2014], the robots ask for help when a failure is detected during a fur-
niture assembly task. The help request is optimized for ease of under-
standing by a human listener using “inverse semantics”, which uses a
probabilistic model of the human’s process for interpreting a request.
Knepper et al. [2015] also make use of the inverse semantics approach
to provide natural language error explanation with the aim of asking
humans for help in an otherwise autonomous robot task planner. This
produces utterances that describe the action required from the human
to complete the task. Their system models the probability that the
human will understand the request.

Explanation and clarification of robot behavior have ties to work
in which natural language commands given by humans are parsed into
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robot controllers and verified for realizability. In this context, Raman
et al. [2013] describe a system that uses linear temporal logic to gener-
ate provably correct controllers and introduce a method for generating
natural language phrases explaining the causes of failure to the human
when their instruction is unrealizable.

In another example, St Clair and Mataric [2015] use explanatory
language for the purpose of coordinating a collaboration. Combining
human activity recognition and a communication planner, the system
reasons about the role the human is taking in the collaboration and
then produces either a self-explanatory feedback or a role reallocation
feedback in order to avoid conflicting actions. Elaborations can also
be dynamically generated. Torrey et al. [2007] present a system that
provides verbal elaborations only if the user appears to need it, as
indicated by gazing at the robot or through slow progress on the task.

Generating accurate and efficient referring expressions is an impor-
tant capability for interactive robots. Fully-elaborated grounded spoken
references are needed when there are no assumptions of shared knowl-
edge between the two parties or the ability to use other modalities.
However, in human-robot interactions, referring expressions are often
supported with nonverbal behaviors (e.g. pointing gestures).

Fang et al. [2015] propose an incremental collaborative model for
generating referring expressions. Rather than generating a single ut-
terance that uniquely specifies a target item in the environment, the
robot iteratively constructs installments that reduce the number of tar-
get candidates and, along the way, confirms that the user understands
what the robot is referring to. Their method for generating referring ex-
pressions involves empirically learning weights over features of objects
to be included in the expression and whether or not to use a pointing
gesture as part of the referring expression. Foster et al. [2008] generate
multi-modal referring expressions that use haptic-ostensive references,
that is, references which involve manipulating an object being referred
to, as opposed to just gestural-deictic references (e.g., pointing). This
includes narrating actions as they are performed by the robot, correct-
ing a human partner’s actions by handing them a different object, or
referencing objects that are already in hand by shaking them.
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The content of speech can also be selected based on the persona the
robot is intended to convey. Salem et al. [2013b, 2014] manipulated the
politeness of speech in a direction-giving receptionist robot based on
socio-linguistic theories of “face”. A robot that is bald on record would
not try to minimize threats to the listener’s face; e.g., in response to
being asked directions to an unknown destination it would say “I have
absolutely no idea”. In contrast, a robot that employs positive politeness
would attempt to imply shared desires; e.g., it would respond “Sorry,
I don’t know where it is because I am new”.

3.1.3 Paralinguistics

Paralinguistics are properties of spoken verbal behavior that are embed-
ded into the verbal message. Based on research on politeness and infor-
mal speech in humans, Torrey et al. [2013] propose ways to make advice-
giving robots sound less commanding. This involves making the robot
use hedges (“I think", “maybe”, “kind of") or discourse markers (“you
know,” “I mean,” “well,” “just,” “like,”) as part of their directions.

Aly and Tapus [2013] developed a system that transforms an in-
put utterance to a new utterance augmented with gestures reflecting
specified personality traits (e.g., introverted-extroverted). Based on the
desired robot personality traits, the verbal response can vary in ver-
bosity, polarity, and repetitions, while the associated gesture can vary
in amplitude, direction, rate, and speed. Niculescu et al. [2013] varied
robot voice pitch to manipulate the personality of a robot (extrovert
or introvert), and Chao and Thomaz [2013] showed that manipulating
turn-taking parameters, with in particular timing, changes the social
dynamics of an interaction, making a robot seem more passive or active.

Paralinguistics can also be used to make robots more persuasive.
Andrist et al. [2013] propose to do so by including different cues of ex-
pertise in the robot’s verbal recommendations. That includes five cues
associated with rhetorical ability: good will, prior experience, organiza-
tion, metaphors, and fluency. Nakagawa et al. [2013] study the effect
of speech volume for a robot that gives advice during a mentally de-
manding task. They find that using a small voice is not different from
using normal voice; however, whispering appears to increase motivation
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and results in improved task performance. Chidambaram et al. [2012]
generate verbal and nonverbal cues of persuasiveness based on the lit-
erature on human persuasiveness, including tone, proximity, gaze, and
loudness.

In some cases, starting with Breazeal’s Kismet (2004), robots pro-
duce only paralinguistics, in the form of tonally-controlled giberrish or
sound effects (“non-linguistic utterances” or NLU). Read and Belpaeme
[2014] study the use of NLUs (expressive beeps) for communication.
They demonstrate that the context in which the sound is made most
strongly determines people’s interpretation of what the sound means.
However, certain iconic sounds, like a rising single tone, have well es-
tablished meanings that might not be overwritten by context. Chao
and Thomaz [2013] demonstrate that robot-generated gibberish speech
can evoke a natural turn taking dialog, and Fischer et al. [2014] suggest
that a robot that passes a human with a beep is preferred over a silent
robot and that a rising pitch contour is preferred over a falling one.

Another aspect of successful paralinguistics is the naturalness of the
verbal expression. Text to speech systems were originally developed for
screen readers and were based on monologue speech. As a result they
can sound unnatural as part of a human-robot dialog. To mitigate this
problem Sugiura et al. [2014] developed a speech synthesizer that uses
recordings of non-monologue speech.

Other work combines paralinguistics with other nonverbal chan-
nels: Bremner and Leonards [2015] add emphasis to parts of a spoken
verbal message, for disambiguation or salience, by using pitch accents
in the intonation and by adding beat gestures, such as a downward
vertical hand movement timed to coincide with the emphasized word.
Al Moubayed et al. [2009] models filled pauses, gestures (head nod,
head shake), facial expressions (smile, eyebrow movement), and acous-
tic prominence to accompany utterances in a storytelling scenario. This
work is rooted in a long tradition of virtually embodied conversational
agents and the coordination of speech and illustrator gestures [Cassell,
2000].
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3.1.4 Coordinating Verbal and Nonverbal Behavior

Much of the integration of verbal production with nonverbal behavior
deals with the timing and coordination aspects between the two modal-
ities for emphasis, clarity, and naturalness. To support the design of
these coordinated systems, Shi et al. [2010] developed a markup lan-
guage that allows for easy programming of communicative behaviors
that incorporate nonverbal behaviors with utterances. The program-
mer of the robot writes sentences tagged with meta-data about desired
nonverbal behaviors such as gazes, gestures, and standing points. Their
system automatically fills in details of the nonverbal behaviors.

Namera et al. [2008] use human-human communication data to
develop a system that learns the timing of nonverbal behavior, such
as nodding, and action response, such as grasping an object, in re-
lation to a confirmation utterance generated in response to a task
command. The robot in Okuno et al. [2009] gives verbal directions
augmented with deictic gestures to help people find their ways to dif-
ferent shops inside a mall. Salem et al. [2013a] develop a closed-loop
approach for synchronizing arm gestures with speech. An empirically
learned forward model roughly estimates the timing of gestures and
a feedback loop adapts the onset of speech based on progress of the
gesture.

Nodding is a particularly common nonverbal gesture that happens
during speech. Several works address the timing of head nods [Sidner
et al., 2006] or head turns [Yamazaki et al., 2008] with respect to speech.
Ishi et al. [2010], for example, present a model to generate nods during
a dialog based on rules inferred from observations of human-human
dialogs. These include nodding to express agreement, but also in syn-
chrony with speech at the last syllable of a phrase or in strong phrase
boundaries.

To manage the conversational floor with multiple humans, Mutlu
et al. [2009a] suggested a system whereby the robot uses gaze cues
to establish the participant roles (addressee, bystander, overhearer).
They designed gaze cues for each role based on theories of human social
communication and formal observations of human-human interactions.
Using their model, the robot was able to establish roles by varying
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whether and how long the robot gazed at people during greetings, turn
exchanges and the core of the conversation.

3.2 Recognizing Verbal Behavior

Understanding verbal expression in a social human-robot dialog also
faces unique challenges, but can be aided by taking advantage of the
situated nature of the interaction, which can help frame and contextu-
alize the recognition problem.

A precursor to the topic of understanding verbal expressions is the
observation that people talk differently to robots than they do to com-
puters. This is in part due to the cultural aspects of conversing with a
robot, but also because humans have multi-modal access to the robot’s
agency, beyond mere text production. Lexical entrainment (also re-
ferred to as alignment) is people’s tendency to adopt the terms of their
interlocutor. Iio et al. [2009] demonstrated lexical entrainment in peo-
ple during interaction where they instruct the robot to move objects.
People both adopted specific terms and types of terms from the robot.
Lohse et al. [2008] found that people adapt their input utterances and
gestures when the robot expresses that it did not understand a previous
utterance.

In the rest of this section, we review the literature concerned with
the understanding of verbal expression along two categories: under-
standing the semantic content of the utterances and understanding its
relationship to the physical world (grounding and referring).

3.2.1 Parsing Semantics

The semantic parsing problem for social robots is more specific than a
general language understanding challenge and is often concerned with
converting speech into robot control, using the task at hand as a con-
text.

Some pieces of work are geared towards programming a robot using
verbal instruction. Miller et al. [2007] use a context-free grammar mod-
eled as a Dynamic Bayes Net, which is compiled into a Hidden Markov
Model to provide verbal programming of a robot’s action sequences.
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Ralph and Moussa [2008] parse commands for moving a manipulator,
suggesting ways to bridge the infinite continuous action space with the
discrete command space.

In the system developed by Deits et al. [2013], people can use ar-
bitrary natural language to command a robot. They use a Generalized
Grounding Graph [Tellex et al., 2011], which assigns grounding prob-
abilities to speech components and uses an entropy measure to find
the most ambiguous part of the command. The robot then attempts
to clarify that part by using yes-no, “What do you mean by . . .”, and
“Can you rephrase . . .” questions. The human’s answer is then merged
into the grounding graph to produce the appropriate action.

Raman et al. [2013] devised a system to command robots to per-
form complex high-level tasks using natural language by converting
natural language specifications into Linear Temporal Logic formulas
that are used for synthesizing controllers. Matuszek et al. [2010] present
a method based on data-driven machine translation to convert natu-
ral language spatial directions to a robot navigation path on a known
map. Similarly Kollar et al. [2010] present a method that computes the
most likely path from spatial description clauses extracted from nat-
ural human directions. A spatial description clause, such as “go past
the computers,” involves a verb, a landmark, and a spatial relation to
the landmark, which can be associated with actions taken as part of a
path on a map.

Other probabilistic and likelihood-based approaches include
Howard et al. [2014], who infer the most likely set of planning con-
straints (i.e., a subregion of the state space) from natural language
instructions, such as “move near the red box and the blue crate"; and
Fasola and Mataric [2014], who use a probabilistic chaining approach to
interpret spatial language instruction sequences combining recency and
spatial grounding criteria for anaphora resolution. MacGlashan et al.
[2015] ground natural language commands into reward functions rather
than actions, using demonstrations of a command being carried out in
the environment.

Expanding the robot’s vocabulary during the interaction, Cantrell
et al. [2011] can utilize natural language explanations to teach new
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tasks identified by an unknown verb. For example, the explanation “To
follow someone means to stay within one meter of them” gives the robot
the ability to correctly respond to the previously unknown command
“follow me” based on its existing understanding of staying within a
certain distance of a target.

3.2.2 Understanding Referring and Grounded Speech

Just as a social robot can use its own gestures and gaze to refer to
objects in space and to ground elements of speech, it can use a variety
of cues to help understand human spoken language. These include the
environment, the context, and the human’s nonverbal behaviors.

Guadarrama et al. [2013] use visual and spatial information in
conjunction with the semantic parsing of utterances to interpret ei-
ther direct reference to objects, or references through objects’ spa-
tial relationships, and to execute commands. This capability is com-
positional: the robot can understand complex commands that re-
fer to multiple objects, their relationships, and actions. In Kollar
et al. [2010], a robot’s path is generated from natural human di-
rection, by grounding landmarks and spatial relationships. Land-
mark phrases are grounded in the perceptual frame of the robot
based on large databases of tagged images from the Web. Also
using images, Blisard and Skubic [2005] model spatial referencing
terms such as front, behind, left, right, between in 2D images in
order to enable commanding the robot using these references. In
Hemachandra et al. [2014], the robot learns semantic maps from a
combination of human descriptions and its own perceptual informa-
tion.

Howard et al. [2014] overcome the exponential scalability problem of
grounding language directly into robot actions by grounding language
instead into a number of planning constraints, and using a trajectory
planner under those constraints to find the correct actions for the lan-
guage instruction.

In some cases visual perspective-taking is used to disambiguate ref-
erences [e.g., Berlin et al., 2006]. Ros et al. [2010] and Lemaignan et al.
[2012] extend that work by representing the robot’s knowledge as an
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ontology and are able to identify ambiguous referents on a shared table
situated between the human and the robot. Humans can make state-
ments informing the robot of new facts, give orders to the robot, and
ask questions on declarative knowledge. Other systems combine verbal
commands with deictic gestures [e.g., Brooks and Breazeal, 2006]. In
one example, Fransen et al. [2007] use gestures to understand prepo-
sitional referents. The robot acts if the gesture unambiguously deter-
mines the referent. If multiple alternatives are possible the system will
ask “Which one?” or “Where?”, and will process human clarification.

Clarification is a powerful tool that a socially interactive robot can
use to help speech understanding. In this context, Sattar and Dudek
[2011] combine cost, including safety risks and action costs, with a con-
fidence measure of having correctly understood the human instruction
based on the recognition HMM. These two factors decide whether to
comply with the instruction or trigger a clarification request from the
human. In Sattar and Little [2014], the authors extend this model by
allowing the robot to clarify, verify, and possibly discard individual
subcommands in a certain task, based on their risk and potential cost.
Cantrell et al. [2010] use incremental semantic parsing of verbal in-
structions in order to provide early back-channel feedback to human
speakers. They also suggest ways to discard disfluencies (“like”, “um”,
etc.) and use corrections (“I mean . . .”, “no, actually”) as overrides in
order to improve the understanding process.

A final challenge is the separation of speakers in multi-human-robot
interaction. Valin et al. [2007] suggest a system that can tease apart
simultaneous speech in a mobile robot. They use the Geometric Source
Separation algorithm with a microphone array and assumed known
source locations. Gomez et al. [2012] use a speech-recognition criterion
to learn the parameters of traditional signal processing methods to
enable multi-party human-robot interaction with distant talkers. Uti-
lizing a multi-modal approach, Trafton et al. [2008] combine auditory
sound source localization with vision based human tracking in order to
determine the speaker during a multi-speaker conversation.

In summary, verbal communication is a fundamental communication
channel for social robots to use with human partners. Generating verbal
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behavior has computational challenges around determining both the
content and the delivery parameters of what to say. Research in the
HRI literature on generating speech has focused on how to represent
knowledge for the purpose of speech production, on algorithms for op-
timizing speech content (particularly for explanations and referring ex-
pressions), and on algorithms to generate the paralinguistic cues and
timing parameters which determine how speech is delivered. Research
in speech understanding for HRI also tackles not only the semantic
aspects of interacting with a robot, but also the possibilities and ad-
vantages of grounded and referred speech. A social robot understands
language in the physical context it is embedded in, and can use the hu-
man’s nonverbal behavior to help understand their verbal utterances.

In many ways robots today are able to generate more sophisticated
speech than they are able to recognize, and this asymmetry is an im-
portant anchor for future opportunities in this space. In contrast to the
number of works on generating paralinguistic cues, there is very little
research into how these cues can be recognized and used in under-
standing verbal behavior. In addition, incremental algorithms for the
recognition of verbal behavior need to be studied and developed further
as this skill is essential for the dynamic nature of human robot dialogs.
Moreover, a promising area for future research is the interplay of gen-
eration and understanding. The recognition and generation of verbal
utterances is an ongoing tightly coupled process of reaching common
ground through dialog. Computational HRI can make use of this cou-
pling to advance both speech production and speech understanding in
social robots.



4
Communicating with Nonverbal Behavior

Nonverbal behavior is a well-studied area of human behavior, with roots
leading back to the 19th century, most notably to Darwin’s “The Ex-
pression of Emotions in Man and Animals” [Darwin, 1873]. Contem-
porary textbooks on the topic [e.g., Moore et al., 2013, Knapp et al.,
2013] agree for the most part on the categories of nonverbal behaviors:
body movements and gestures (kinesics), including facial expressions
and eye gaze; managing space and territory (proxemics); touch (hap-
tics); tone of voice (vocalics); and appearance, including morphology,
clothing, and body alterations.

To support social interaction, robots have to control and understand
these modalities of nonverbal behavior. As a result, nonverbal behavior
has been an active area of research since the beginning of the field of
HRI. In this section, we give an overview of both the generation and
recognition aspects of nonverbal behavior, broken down by categories
and modalities of nonverbal behaviors.

HRI research has given unequal attention to the various modali-
ties of nonverbal behavior, with the bulk of the research concentrated
around kinesics, and an additional emphasis within kinesics on gaze,
gestures, and facial expressions. As a result, the following section, too,
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is heavily focused on kinesics research. There is slightly less research
on computational proxemics, mostly in the context of social navigation
and much less research on computational haptics.

Nonverbal behavior is closely tied to other HRI capacities. For ex-
ample, proxemics has a clear overlap with social navigation and will
be discussed in more detail in Section 8. Similarly, haptics partially
overlaps with the work on collaborative manipulation covered in Sec-
tion 7.5. Most of the vocalics literature was covered in Section 3.1.3
above. Facial expressions, due to their strong connection to the com-
munication of emotions, are discussed in more detail in Section 5 on
emotional communication in HRI. Finally, research addressing appear-
ance is usually considered part of the robot design literature and not
included in this survey.1

4.1 Categories of Kinesics

A bulk of the computational HRI kinesics research is influenced by
seminal work by Ekman and Friesen on gestures and facial expres-
sions [Ekman and Friesen, 1969], as well as the work of Argyle on gaze
and eye-contact [Argyle and Dean, 1965, Argyle et al., 1973].

Ekman and Friesen identify five major categories of kinesics: em-
blems, which are symbolic gestures replacing speech elements, such as
the ‘thumbs up’ gesture; illustrators, which are gestures of all kinds ac-
companying speech acts; affect displays, expressing emotion, primarily
through facial expressions; regulators, which are nods, hand movements,
postures, and gaze behaviors that help coordinate conversation; and
adaptors, such as rubbing one’s face, shifting hair, or tapping on the ta-
ble. Illustrators are a large group of nonverbal behavior, so Ekman and
Friesen further subdivide them into a number of categories, including
deictic, or pointing, gestures, batons, which are rhythmic movements

1It is worth mentioning the extentive work done on nonverbal behavior expression
in the virtual characters and embodied conversational agent literature, which address
some of the same issues as discussed in this section. Note that in this survey we only
discuss nonverbal behavior expression in robotics, which has distinct parameters and
challenges, related to the embodied, situated, and physically constrained nature of
the nonverbal behavior performed by robots.
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emphasizing speech, and other gestures to depict ideas, delineate space,
and imitate human activities.

This categorization is useful for—and used by—HRI researchers,
and we, too, use this taxonomy in the following section. In kinesics,
we cover deictic illustrators, regulators and batons, and then move to
discuss gaze and eye contact, proxemics, and haptics.

4.2 Deictic Gestures

Deictic gestures are a kind of illustrator used to “point to a present
object”, i.e., an object in the space of the pointer. Robots need to be
able to accurately interpret human pointing and generate legible and
disambiguated pointing on their own.

Brooks and Breazeal [2006] present a framework to recognize deictic
gestures from a human. A spatial reasoning system taking into account
the hand-eye relationships and the environment resolves pointing and
object references. This work additionally uses speech cues to constrain
the recognition problem. In recent years, the recognition problem has
been significantly simplified by readily available human pose trackers
using RGB-D cameras. Van den Bergh et al. [2011] present a real-
time pointing detection system using a Microsoft Kinect sensor for a
robot giving directions. Similarly, Perez Quintero et al. [2013] achieve
pointing recognition with a Kinect for object selection.

Numerous studies investigate aspects of robots using pointing ges-
tures to communicate with humans. These are shown to increase peo-
ple’s information recall [Huang and Mutlu, 2013] as well as task perfor-
mance and perceived workload [Lohse et al., 2014]. Eye gaze is shown
to significantly assist the recognition of pointing gestures [Iio et al.,
2010, Häring et al., 2012], and in fact, Liu et al. [2013] present a study
that shows that people do not usually point to refer to a person, but
instead use eye gaze or casual pointing. A robot is seen as more polite
when it balances the two types of pointing in a social situation.

Deictic gestures to the same object can be designed in a variety of
ways. Sauppé and Mutlu [2014] compare several such variations on a
small humanoid robot, including pointing, presenting, touching, and
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sweeping, and find their effectiveness to be strongly related to the
context, including the object’s distance from the referrer and proximity
to other objects. In non-humanoid robots, Williams et al. [2013] show
that the direction and pitch of the robot’s head was important. People
seem to interpret this as eye gaze, and expect it to be coordinated with
the pointing gesture.

With the aim of automatically generating deictics and other ki-
nesics, Ou and Grupen [2010] use a learning approach for a robot to
acquire communicative behaviors from pragmatic actions. Using hier-
archical Markov Decision Processes and a set of primitive behaviors
(including tracking visual features and reaching for and manipulating
objects), the robot learns that a failed reach communicates pointing
to the human and that appropriately adding eye gaze improves per-
formance. In another learning-based system, Droeschel et al. [2011a]
extract a set of body features from depth and amplitude images of a
time-of-flight (ToF) camera and train a model of pointing directions
using Gaussian Process Regression.

4.3 Regulators and Batons: Coordinating Gesture with
Speech

In some cases gestures accompany speech for rhythmic emphasis (ba-
tons) and in others to coordinate verbal communication (regulators).
Salem et al. [2012] present a baton generation system for the Honda
ASIMO robot based on a motor control program that works to sched-
ule and align speech and gesture appropriately. People interacting with
the robot rate interactions with gesture as better than speech-only, but
congruent vs. incongruent scheduling has little impact.

Yamazaki et al. [2008] present a system for a museum robot to move
its head at “interactionally significant" points of an explanation, such
as at transition points, together with deictic words, in response to a
question, upon keywords, or with unfamiliar words. The approach is
shown to positively affect human engagement. In early work on robot
regulators, Sidner et al. [2006] build a robot that recognizes head nods
from a human conversation partner, and can generate response nods.
Experimental results were unexpected: People nod at the robot if it is
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talking, regardless of whether or not the robot recognizes their nods
or responds appropriately. However, Hashimoto et al. [2007] show that
a robot’s “speaker’s nod” using a motion model adapted from human
timing, angle, and velocity data can lead to greater human-like rat-
ing and emotional expression of interlocutors compared to a randomly
nodding robot.

4.4 Eye Gaze

In their seminal work, Argyle et al. identify different communicative
functions of human gaze, with some similarity to Ekman’s kinesic cat-
egories [Argyle and Dean, 1965, Argyle et al., 1973]. They argue that
gaze is used to signal interpersonal attitudes, to illustrate speech for
emphasis and context, to regulate dialog and turn-taking, and to create
or avoid intimacy. Research in computational HRI is influenced by this
categorization and is working to develop systems that generate similar
social gaze behaviors. Since gaze detection, tracking, and interpreta-
tion is a vast literature in the more general HCI community and not
specific to HRI, we do not survey it in this section.

Studies show humans to be influenced in a variety of ways by robot
gaze. Staudte and Crocker [2009] demonstrate that a human’s own gaze
behavior and understanding of the robot’s speech content is modulated
by the coordination of that robot’s speech and gaze. They also show
that people’s eyes follow the robot’s gaze. Admoni et al. [2013] find
that people are more accurate at recognizing shorter, more frequent
fixations than longer, less frequent ones. In a collaborative task, people
are also found to take spatial and context clues from brief (400ms)
robotic glances [Mutlu et al., 2009b]. Other work in the storytelling
domain, however, shows people’s ability to retain story information to
be only influenced by gestures, and not by gaze [Van Dijk et al., 2013].

Gaze cues can be particularly useful during robot-to-human object
handovers. Admoni et al. [2014] find that these cues influence people’s
compliance with the direction indicated by the gaze in ambiguous
handover situations. The addition of deliberate-seeming delays in-
creases compliance also in non-ambiguous situation, even when this
results in counterintuitive human behavior. Moon et al. [2014] show
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that people reach for an offered object earlier when a robot signals via
gaze to the handover target location. A field study shows gaze to be
a significant cue to identify the receiver of a handover in a large group
setting [Kirchner et al., 2011].

Eye gaze can be used by robots to help manage the conversational
floor. For example, looking away can signal cognitive effort, helping
to regulate a conversation. Based on this insight, Andrist et al. [2014]
present an autonomous three-function gaze control system to control a
robot. The robot uses face-tracking to engage in mutual gaze, idle head
motion to increase lifelikeness, and purposeful gaze aversions to achieve
regulatory conversational functions. In contrast, to achieve more nat-
uralistic and engaging gaze behavior, Sorostinean et al. [2014] present
a social attention system that tracks a person but attends to strong
motion when detected in its visual field. In a non-human-inspired take
on the expression of robotic gaze attention, Yamaguchi and Hashimoto
[2009] add an LED color cue to a pan-tilt robot head, mirroring the
color of the object the camera is looking at.

Gaze can also be used by robots to signal interpersonal attitudes
and to create intimacy and trust. A humanoid robot’s gaze has a posi-
tive impact on trust for difficult human decisions, and it also improves
participants’ task performance on easy trials but hinders it on difficult
trials [Stanton and Stevens, 2014]. Furthermore, robots are found to
be more persuasive when they use gaze [Ham et al., 2015]. However,
we did not find computational systems that make use of eye gaze to
modulate interpersonal attitudes or intimacy.

In order to generate a realistic robotic eye gaze behavior, Kuno
et al. [2006] analyze human head-orientation data in a museum set-
ting. Based on this, they present a system for a guide robot. The
robot alternates gaze between exhibition items and human audiences
(through face detection) while explaining the exhibits. In a variation on
human-like gaze, Matsumaru et al. [2005] employ gaze-like behavior in
a robot using a glass ball with an eyeball projected on it. Their mobile
robot communicates direction of motion using horizontal placement,
and speed of motion by changing the eyeball “openness”.
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4.5 Proxemics

Proxemics refers to the socially communicative or expressive aspects
of spatial positioning and orientation. Social robots can infer human
intention and make predictions based on human proxemics and can use
proxemics rules to generate more socially appropriate behaviors. Note
that much of generative proxemics is covered in Section 8 on social
navigation.

Mead et al. [2011] suggest spatial metrics for analyzing human be-
havior, in combination with other measures such as voice loudness.
They demonstrate the feasibility of autonomous real-time annotation
of these metrics during multi-person social encounters using a sensor
suite including an overhead camera, a markerless motion capture sys-
tem, and an omnidirectional microphone. In Mead et al. [2013] the au-
thors extend this to show the impact of individual vs. physical vs. psy-
chophysical features in recognition of proxemic social behaviors. The
psychophysical features build more successful Hidden Markov Models
for this recognition task (72% vs. 56% accuracy). Using a Gaussian Mix-
ture Model with the naïve-Bayes approach, also from overhead camera
observations, Feil-Seifer and Mataric [2011] achieve a 91.4% accuracy
rate in classifying task specific behaviors in robot-child-parent interac-
tion, and demonstrate that these classes are sufficient for distinguishing
between positive and negative reactions of the child toward the robot.

Tasaki et al. [2005] focus on the spatial relationships between a
robot and multiple people during interaction. Using tactile sensing,
face detection, and sound localization, the robot estimates the distance
between humans, and maintains a “friendliness space map”, leading to
robot attention behavior selection.

On the generative end of the spectrum, early work by Brooks and
Arkin [2007] combines proxemics, emblematic gestures, postures, head
pose, orienting, leaning, and head nods in a behavioral overlay frame-
work. They also use a social hierarchy model to generate appropriate
behaviors for different classes of human interlocutors, such as an old
friend, a stranger, or an authority figure. In another work aimed at
generating behavior from proxemic information, Yamaoka et al. [2009]
observe people’s proxemic behavior in joint attention situations and
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develop a model of behavior for robots to detect a partner’s attention
shift and appropriately adjust their own body position and orientation
in establishing joint attention with the partner.

4.6 Haptics

Work in robot touch as a nonverbal communicative channel is sparser
than kinesics, gaze, and proxemics, both for touch detection and touch
generation. Several robotic systems infer human intentions through
force sensing on the robot’s end effectors—e.g., Chen and Kemp [2010],
where the robot “feels” the human pull it and infers the intended mo-
tion vector and speed, or Ferland et al. [2013] which uses joint-space
impedance control of the arms’ differential elastic actuators. This ap-
proach has numerous variants in collaborative manipulation, as ex-
panded upon in Section 7.5.

Researchers have also explored touch sensors for robotic skins, with
algorithms classifying types of affect intentions. A seminal example is
the “Huggable” robot skin [Stiehl et al., 2005, Knight et al., 2009], and
the artificial fur developed by Flagg and MacLean [2013]. In recent
work, Silvera-Tawil et al. [2014] design a stretchable sensitive skin and
a classifier based on the LogitBoost algorithm to classify six emotions
and six social messages transmitted by humans when touching an
artificial arm.

People have been shown to be influenced by a robot actively touch-
ing them, for example to persist in a monotonous task [Nakagawa et al.,
2011]. Most studies, however, focus on the specific iconic touch of a
handshake. For example, Ammi et al. [2015] show that stiffness of joints
and grasp force can modulate the sense of dominance a robot emits,
and Bevan and Stanton Fraser [2015] finds that handshaking before ne-
gotiations improves cooperation. Zeng et al. [2012] present a generative
model for handshaking. Their hybrid reactive/deliberative model tries
to maintain its own position trajectory, but is also influenced by the
human, resulting in trajectories similar to human-human handshakes.

In summary, nonverbal behavior is one of the most studied fields in HRI,
with much of the research focusing on a subset of behaviors, notably
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on deictic gestures, some illustrators, and eye gaze. Surveying the lit-
erature of systems that produce and recognize nonverbal behavior, the
bulk of computational HRI research deals with recognizing pointing
gestures and with generating batons and regulators. We did not find
work on emblems, adaptors, and other illustrators, such as the ones
that depict actions, ideas, or spatial relationships. Surprisingly, while
there is a considerable amount of research on the importance and ef-
fects of eye gaze, there is effectively little computational research on
the production of appropriate gaze behaviors in HRI.

Overall, in a survey of ten years of computational HRI research, we
find a consistent trend: Compared to the vast amount of empirical work
on nonverbal behavior dominating the psychological subfield of HRI,
the computational literature on the topic is sparser than expected. For
example, our survey indicates that there is little work on the recogni-
tion of illustrators, or on the production of deictic gestures. Most other
kinesics types are effectively ignored. Even eye gaze, which is a corner-
stone of empirical HRI, does not have a similarly rich computational
literature. Most of the known functions of gaze are not being utilized
in the design of computational systems. The topic of HRI haptics, or
interacting with robots through touch, is also ripe for future research,
especially in the context of robots touching humans, or in the explo-
ration of new materials for haptic HRI. These gaps all offer promising
areas of future research in nonverbal behavior for computational HRI.



5
Affect and Emotion in Social Robots

Of the range of communicative and regulatory roles of nonverbal be-
havior, the expression and recognition of emotions stand out and play
a major role. Emotions are a cornerstone of how humans communicate
effectively with each other and come to infer another person’s men-
tal state as it relates to the current context or situation. Indicative
of this, the relationship between emotions and nonverbal behavior re-
ceives separate and extended attention in seminal texts on human non-
verbal behavior [e.g., Darwin, 1873, Ekman and Friesen, 1969]. The
connection between technology and emotions is later emphasized by
Norman [2004], who argues that emotional interaction should play a
central part in the design of technological artifacts as well, particularly
in robot design.

Affective interaction with robots falls within the broader research
field of affective computing [Picard, 1997]. Both Norman and Picard
argue for deep underlying models of emotions in affective technology,
rather than surface level interactions in which the technology merely
uses emotions as a communication technique. In the field of computa-
tional HRI, we find work spanning this spectrum between underlying
affect models on the one end and surface-only emotional interactions
on the other.
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A seminal example of an emotionally expressive social robot is
Kismet [Breazeal and Scassellati, 1999, Breazeal, 2004]. Kismet’s at-
tention system includes a motivation model including drives and af-
fects. Each drive has a desired operating point and the dynamic
state of the drives influences a subsequent 3-dimensional affective
state. Socially communicative behaviors are triggered by affect states
with the terminal goal of keeping the internal drives in their de-
sired state. This dynamic plays out in the robot’s nonverbal behav-
ior, resulting in a continuous nonverbal social exchange with a human
partner.

Since Kismet, there have been several robots that employ similar
affect-based architectures and emotion expression systems. We discuss
these in the following section alongside other computational HRI
systems concerned with expressing emotion more generally, as well as
those that tackle the converse problem: the detection of emotions in a
social context. Detecting emotions in HRI overlaps significantly with
the larger body of work on emotion recognition in human-computer
interaction and affective computing. Similarly, the challenge of emotion
expression is extensively studied in the virtual character and embodied
conversational agent literature. In this survey, we do not cover these
two literatures, but instead focus on the work done specifically in the
context of HRI.

5.1 Models of Emotion for Social Robots

When a social robot interacts with a human, the benefits of a computa-
tional capability to express and perceive nonverbal emotional cues are
evident. In contrast, the utility of deeper underlying emotional models
is more subtle. Like any control architecture, computational emotion
models are designed to govern a robot’s behavior, i.e., its response to
external stimuli. This can have two potential outcomes, expressive and
pragmatic: First, emotion models allow a principled parametrization of
socially expressive behaviors. Second, these models can drive decision-
making for action planners and regulate other pragmatic behaviors,
such as attention.
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Many researchers are influenced by and build on Kismet’s emo-
tion architecture, which maps emotions on a multi-dimensional
space [Breazeal and Scassellati, 1999]. A popular such affective space
is along the arousal-valence-stance dimensions [Scherer, 2005]. Oth-
ers [e.g., Saldien et al., 2010] use the circumplex model of emotions
[Russell, 2003].

Kim et al. [2005] propose a two-layer architecture with an internal
drive system inspired by that of Kismet. The reactive layer encodes
predefined rules which relate input stimuli to corresponding emotional
expressions. The deliberative layer models appraisal of stimuli and oper-
ates through “action coloring,” i.e., the expression of emotions through
the modification of other actions [see also: Park et al., 2009]. Hirth
et al. [2011] present a framework that models five different functions of
emotion, namely the regulative, selective, expressive, motivational, and
rating functions.

Some researchers broaden the scope of affect models for robots by
considering slower-changing and longer-term properties of biological
emotion systems. This includes models of mood, attitudes and per-
sonality. For example, Moshkina and Arkin [2005]’s TAME framework
(Traits, Attitudes, Moods and Emotions) models mood as undirected,
longer term, lower intensity emotional states. In their model, attitudes
are predispositions towards positive or negative emotional states in re-
action to certain objects, people, or situations. Similarly, Gockley et al.
[2006] present an emotional model with short-term responses, mid-term
moods, and longer term attitudes, implemented on a robot receptionist.
Ahn and Choi [2007] represented personalities as different parameter
values of a linear equation that combines a system of state dynamic
equations corresponding to reactive, internal, emotional, and behavior
dynamics.

Common to the above-listed cognitive models of emotions is that
they are highly sensitive to well-tuned parameters. In other words,
to enable a system to react to stimuli in a desired way, the parame-
ters of the system need to be set in a particular and often hand-coded
way. These parameters include, for example, the arousal-valence-stance
tags associated with different stimuli, the weight that each input has
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on the underlying motivational drives, and the decay factor of drives
and affects. The parameters are also not necessarily stable. Small
changes to parameter values may result in vastly different robot be-
havior.

There is currently no systematic theory or methodology for how
these parameters should be tuned to appropriate values or potentially
learned from the robot’s past interactions. This is a promising oppor-
tunity for future research and a necessary one toward the broader use
of emotion models.

5.2 Expressing Emotions to Communicate with Others

A large portion of emotion-related work in computational HRI focuses
on robots effectively expressing emotions across modalities. The major-
ity of this research focuses on facial expressions and motion generation,
with a smaller share using other channels, such as vocalics and color
for expressing emotions.

5.2.1 Facial expressions

Facial expressions are a central modality for emotion expression [see
also: Ekman and Friesen, 1969], and are therefore heavily used in HRI
as well. For example, a long-term deployed robot receptionist expresses
emotions on a screen-based avatar through facial movements as part of
direction giving dialogs with visitors [Gockley et al., 2006].

A great number of works involve using hand-crafted facial expres-
sions for high degree-of-freedom anthropomorphic faces, often in the
context of a new robot face being developed [Lütkebohle et al., 2010,
Ahn et al., 2012, Kedzierski et al., 2013]. To determine a more gen-
eral approach, Bennett and Šabanović [2014] study the minimal set of
features for expressing a full range of emotions and find that move-
ment of the eyes, eyebrows, and mouth alone were sufficient. Moving
beyond manually specified discrete facial expressions, Shibata et al.
[2006] presents a parametric model for generating emotional facial ex-
pressions. Their facial features are implemented in the form of LED
projections on an anthropomorphic robot.
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A challenge for designing robotic facial expressions is that their un-
derstanding by humans heavily depends on context and combination
with additional communicative channels. Costa et al. [2013] demon-
strate that gestures that accompany facial expressions can aid the
recognition of the expression. Zhang and Sharkey [2011] show that mu-
sic with congruent valance can enhance the recognition of a robot’s ex-
pression.1 Despite these studies, we did not find works that specifically
use context in support of computationally generative facial expression
systems.

5.2.2 Affective Motion

Another potential channel for emotional expression is a robot’s motion
path. Unlike faces, usually purely intended for communicative expres-
sion, a robot’s motion often has a pragmatic purpose and thus addi-
tional constraints. Hence, expressive motion needs to be overlaid over
or sequenced with pragmatic motions. An additional challenge is that a
robot’s motion capabilities are extremely diverse (for example, robotic
arms and mobile robots have a vastly different motion space) and are
also usually quite different from human motion.

HRI user studies show that emotional state can be legible through
posture [Breazeal et al., 2007], whole body locomotions [Kishi et al.,
2013], and emotive gait patterns [Karg et al., 2010], several of which
have been used to generate expressive robot motion paths.

For example, Bretan et al. [2015] present a human-inspired emotion
expression system for a non-humanoid desktop robot. The framework
manipulates eight movement parameters (including posture, head

1Context is also a confounding factor in the evaluation of an emotionally expres-
sive system. Any design of a computational system to express emotions carries with
it the challenge of how to evaluate its success. In a typical setup, researchers ask
humans to judge what emotion is being expressed by the robot, but this approach
is context sensitive. Whether the expression is experienced in a contextual vacuum,
alongside other cues, or within an ongoing interaction will bias how a person judges
an expression. A second factor is dynamics: Whether a person views a static picture,
a dynamic video, or a situated interaction of the expression will bias their percep-
tion of the expression [see: Bretan et al., 2015]. These and other confounding factors
should be considered when discussing the evaluation of any emotionally expressive
computational system.



148 Affect and Emotion in Social Robots

activation, volatility, and exaggeration) based on the circumplex model
of emotions. They then overlay these parameters over the robot’s
pragmatic movement.

Sharma et al. [2013] develop guidelines to author aerial robot mo-
tions to elicit desired affective responses. Their work is based on the
Laban Effort System (LES) by Laban and Ullmann [1971], which is
increasingly adopted in HRI research for modeling emotion expression
through motion. The LES modulates movement through four param-
eters: Space, Time, Weight, and Flow. Other work using the LES in-
cludes Knight and Simmons [2014], who aim to automatically produce
Laban effort motion paths for point robots, and Masuda and Kato
[2010] who present a method for adding a target emotion to arbitrary
motions of a humanlike robot.

5.2.3 Expressing Emotion through Other Channels

A robot has access to additional nonverbal channels to express emo-
tional state. To support this claim, a study by Niculescu et al. [2013]
demonstrate that different robot personalities could be attained by ma-
nipulating voice pitch. Johnson et al. [2013] demonstrate the successful
use of non-anthropomorphic colored LEDs. They manipulate the color,
intensity, frequency, sharpness, and orientation of movement of LEDs
around a robot’s eyes to express emotions. Despite the above studies,
we did not find generative computational systems that make use of
these channels for robot emotion expression.

5.3 Recognizing Emotions in a Human Partner

Recognizing a human’s emotional state in an interaction with a robot
has several uses. In the context of collaboration, it can allow a robot to
adapt its behavior to fit the person’s state and preferences. In a learning
interaction, it can serve as a natural channel for human feedback about
the robot’s execution of newly learned actions. As mentioned above,
the work in computational recognition of human emotion is part of the
broader topic of affective computing. We discuss only the work related
to perceiving human emotions within a social robotics setting.
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Many research projects focus on facial expressions and facial feature
extraction from vision during human-robot interaction [e.g., Cid et al.,
2013]. For example, Lang et al. [2013] enable automatic recognition
of facial communicative signals in the context of an object teaching
scenario, comparing a static approach to one that considers tempo-
ral dynamics. In other work, the real-time emotion recognition sys-
tem (RTERS) localizes faces and extracts their features in a sequence
of images. It then codes facial expressions into one of seven different
emotional states: happiness, sadness, fear, disgust, anger, surprise, and
neutrality [Alazrai and Lee, 2012]. In Boucenna et al. [2014], a robot
learns to recognize the facial expressions of the human partner on-line
if they imitate the robot’s prototypical facial expressions.

Within the visual modality, emotions can be determined by features
other than facial expressions. Sanghvi et al. [2011] analyze features from
videos extracting postures and body motion to detect engagement of
children playing chess with a robot. McColl and Nejat [2012] classify
real-time body language using a RGB-D sensor. Their system deter-
mines a person’s affect in terms of their accessibility towards a robot
during one-on-one interactions. Beyond postures, Venture et al. [2014]
look at body motion and demonstrate a system that recognizes affect
from gait. They conclude that it is possible to discriminate affects from
gait data significantly better than chance, using only the lower torso
movement and the trunk and head inclination.

Finally, there is a body of work in detecting affect from physiolog-
ical signals. Leite et al. [2013] describe a robot that plays chess with
children while monitoring their electrodermal variations as an indicator
of their affective state. In Liu et al. [2008], experimental results with
six children on the autism spectrum show that a robot can automati-
cally predict individual anxiety and liking level in real time with 80%
accuracy based on physiological signals of electrocardiography (ECG)
and electromyography (EMG) during the interaction. Finally, Kulic
and Croft [2007] present an HMM-based affective state classifier for
estimating affective state from physiological data during human-robot
interaction. Their sensors include skin conductance, heart rate, and
facial muscular movement detectors using EMG.
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To summarize, our survey found work in computational HRI that is
related to emotions in three areas: underlying models of emotions and
affect for modulating behavior; systems for expressing and communi-
cating emotions, mainly through facial expressions; and systems for
detecting emotions in humans, in the context of interacting with a
robot.

In the emotion expression space, much of the work focuses
on human-inspired robot faces, whether projected on a screen or
implemented using mechanical actuators. However, we know from
popular culture, such as science fiction and animation, that non-
anthropomorphic robots can also be emotionally expressive using only
audio and motion cues. Until very recently, there was little work in
these areas compared to the large amount of research on human-like
facial expressions. In addition, this question is likely to be more per-
tinent as low-cost robotic devices are developed for home use. These
domestic robots will have a low-degree-of-freedom design and will need
to express emotional state under these constraints.

Furthermore, all three thrusts (models, expression, and recognition)
have been mostly studied in isolation from each other and outside the
context of entire interactions or task collaborations. However, human
subject studies show that context greatly impacts people’s emotional
state and emotion perception. This suggests that an integrative ap-
proach to computational emotion research in HRI could be a fertile
ground for future work. We also identify a lack of literature on the topic
of machine learning aimed to automatically determine the parameters
of emotional models for social robots. Finally, there is an open area
of study in computational models of emotions for HRI in real-world
environments.



6
Understanding Human Intentions

In the rest of this survey we focus on the high-level social capacities
and behaviors that are predicated on the foundations we have discussed
thus far. The first of these is the capacity of a robot to make inferences
about human intentions and to communicate its own intentions in an
interaction.

Humans have a natural tendency to interpret the behaviors of others
as intentional, goal-directed actions. Studies of infants show that they
are able to segment complex actions into units corresponding to the
initiation and completion of intentional action [Baldwin et al., 2001].
They show surprise when someone executes actions that are inefficient
in achieving goals [György et al., 1995], and are more likely to imitate
actions they perceive as intentional than those they perceive as acci-
dental [Carpenter et al., 1998, Tanya et al., 2005]. This indicates that
the ability to perceive and reason about intentional action is central to
the way people interact with and around each other from a very early
age.

Philosopher Daniel Dennett calls this ability to infer intentions the
“Intentional Stance" [Dennett, 1989]: As social animals, humans de-
veloped the ability to reason about mental states—beliefs, desires, and
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intentions—in order to predict the actions of other humans and ani-
mals. Humans apply this reasoning strategy to anything that produces
self-motivated action that cannot be described by physics. For exam-
ple, a stone rolling down a hill is doing so because of physics, whereas
a person grabbing an apple is doing so because they want to possess
(and perhaps eat) the apple. Interpreting the behavior of others as
goal-directed enables an observer to infer additional meaning about the
behavior of others, and plays a crucial role in collaborative and social
behavior [Tomasello et al., 2004]. Hence, the construct of intentional
action is also an important aspect of social robotics. In this section we
survey the research around representing, understanding and reasoning
about the intentions of a human partner, as well as research concerned
with enabling robots to communicate their own intentions.

6.1 Toward a Theory of Mind: Cognitive Frameworks for In-
tention Parsing

The ability to decipher a mental state of another person is called “folk
psychology” or denoted as having a Theory of Mind (ToM) capacity.
While some aspects of ToM are present from a very young age (e.g., gaze
following, joint attention, and social referencing), it is widely accepted
that full ToM capability develops progressively until the age of five
[Gopnik et al., 2001]. Over the years, several cognitive architectures for
HRI were inspired by the notion of ToM and implemented aspects of
it to allow robots to parse intentional behavior.

For example, Trafton et al. [2013] describe the ACT-R/E cognitive
architecture for HRI. The motivation is for robots to build spatially
embodied models of human cognition in order to understand how and
why people think the way they do. Robots can use this kind of perspec-
tive taking—and reasoning about people’s reasoning—to predict what
a person will do in different situations, e.g., that a person may forget
something and may need to be reminded, or that a person cannot see
something that the robot sees. Kennedy et al. [2009] gives three exam-
ples of specific social situations in which ACT-R/E is able to represent
and reason about the following: spatial perspective taking, action per-
spective taking in teamwork reasoning tasks, and dominant-submissive
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reasoning in a social task. In all three cases the system uses its own
model of the skill as a simulation of the human partner in order to infer
things about the given situation.

On that note, Pandey and Alami [2010b] compute “mightability
maps”, enabling a robot to reason about what a human collaborator
might see or reach in a shared workspace. These are computed using the
human’s position, posture, and visual perspective-taking. In the context
of shared Urban Search and Rescue (USAR), Talamadupula et al. [2014]
use probabilistic reasoning about both the human’s and robot’s beliefs
to decide between alternative plans with ambiguous commands.

Some researchers in computational HRI use “Simulation Theory” as
a theoretical construct to underpin ToM. The theory is grounded in the
idea that humans use motor and perceptive resonance, i.e., simulating
a collaborator with one’s own motor and sensory-perceptive cortex to
enable joint activities [see: e.g., Sebanz et al., 2006].

One such example is work by Breazeal et al. [2009], who propose an
embodied cognition architecture that enables a robot to take the per-
spective of a human collaborator. The architecture is inspired by human
ToM models, in particular the reuse of the robot’s own action system
to simulate the likely intentions and goals of the human collaborator.
The robot simultaneously holds its own beliefs and the beliefs of the
human by simulating the human’s sensory perception through its sen-
sory and perceptual system, and additionally using information about
the human’s sensory perspective. This architecture was implemented
on a humanoid robot in collaborative and learning interactions.

Gray and Breazeal [2014] also present a self-as-simulator architec-
ture for mental state manipulation through physical action. The robot
models how a human’s mental states are updated through their vi-
sual perception of the world around them. This modeling, combined
with geometrically detailed perspective correct simulations of the im-
mediate future, allows the robot to choose actions which influence
the human’s mental states through their visual perception. The sys-
tem is demonstrated in a competitive game scenario, where the robot
attempts to manipulate the mental states of an individual in order
to win. Milliez et al. [2014] show a similar result by maintaining a
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human-compatible representation of the world and people and ob-
jects, allowing for appropriate reasoning about intentions. Their sys-
tem, called SPARK (SPAtial Reasoning and Knowledge), can represent
objects in the world, generate relative and symbolic information about
these objects for the purpose of communication, and reason about hu-
mans in the environment in terms of their visual perspective and beliefs
about these objects.

Others have shown that a full-blown cognitive architecture may not
be necessary to still achieve some of the benefits of self-as-simulator for
intent recognition. In Kelley et al. [2008], the robot first learns activi-
ties by building a Hidden Markov Model activity model. Then it uses
the same set of models to recognize an intent as seen by a human in
the environment. The key to this is the level of representation used.
The robot’s motion and human’s motion are both seen as a function
of the position and orientation of the actor (robot or human) with re-
spect to another person in the environment. Butterfield et al. [2009]
propose that Markov Random Fields (MRFs) are a better probabilis-
tic mathematical model for incorporating the internal states of other
agents into robot decision making. They propose that ToM capabilities
are essentially the estimation of latent variables based on the history of
perceived observations and present theoretical models that capture the
experimental findings from Theory of Mind studies in developmental
psychology.

6.2 Parsing Human Attention

Full ToM and the ability to infer a variety of mental states is more than
most social robots can achieve today. As a stepping stone, much work
has gone into endowing robots with the ability to achieve one partic-
ular mental state inference: inferring what the human is attending to
in order to establish joint attention between the human and the robot.
This is clearly the precursor to much of social interaction; a robot has
to infer, represent, and reason about what aspects of the environment
an interaction is about. Attention parsing has been a challenge for
the computational HRI research community for many years [see: e.g.,
Scassellati, 2001]. In this section we cover only a few recent examples.
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Nagai [2005] presents a supervised learning approach, building a
model that can reflexively achieve joint attention. It uses the coordi-
nation of two neural networks, one modeling edge features, the other
modeling optical flow. The learned models detect a gaze direction from
a camera zoomed on the face, which is then used to select an object
of attention from a camera that has a wider view of the person and
the workspace. Results indicate that both modalities together achieve
better performance than either one alone.

Huang and Thomaz [2011] outline a tripartite model of joint atten-
tion capabilities for social robots: responding to joint attention, initiat-
ing joint attention, and ensuring joint attention. In a user study, they
show that responding to joint attention improves performance in an
object labeling task, and the robot is perceived as more competent and
socially interactive. In a second experiment, they generate scenarios in
which an anthropomorphic robot initiates and ensures joint attention.
Results show that a robot’s ensuring joint attention behavior is judged
as having better performance in an interactive task and is perceived as
a natural behavior.

Joint attention is especially important for shared manipulation of an
object. Grigore et al. [2013] study a handover task; their work compares
a model that uses an HMM based on only physical features of the action
versus one that uses information about the human’s engagement in an
interaction: eye gaze and head gaze orientation as a sign of a human’s
focus of attention and engagement in a task. Their findings indicate
that the models incorporating attention signals are significantly more
successful for handing over an object.

Broquère et al. [2014] present an attentional controller for human-
robot interaction. Their system first computes a cost-map for each point
in space based on the human’s visibility and comfort, as well as the
robot’s end effector and object positions. These cost maps are used to
adapt the sensor processing frequency of that region, as well as the
monitoring frequency parameters of various behavioral primitives. An
executive then takes into account the various primitives’ states to both
switch between them, and adjust the parameters sent to a planner
which is executing the chosen primitive.
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6.3 Understanding Intentional Action for Prediction

Deciphering the intent of a human action goes beyond recognition of
the current activity, and includes inferring the goal a person is trying
to achieve and predicting their future actions. Many works in this area
focus on computational models that allow for forward prediction of
the human’s activity, letting the robot anticipate their action before it
happens.

Traditional approaches to activity recognition require seeing the en-
tire activity before a classification can be made. In contrast, Ryoo et al.
[2015] detect onset signatures of activities enabling the robot to detect
them before completion. This is an example of incremental recognition,
which highly relevant to the problem robots face in an HRI setting, i.e.,
making real-time predictions of human partners. Relatedly, Iengo et al.
[2014] use an HMM-based approach that can be trained online with
few samples and can cope with intra-user variability during the ges-
ture execution. Models are employed within a continuous recognition
process that provides the probability of each gesture at each step.

Hoare and Parker [2010] use Conditional Random Fields (CRFs)
to determine the human’s intended goal, showing the effects of using
different task-related features to improve accuracy and the time to the
correct classification. They show that CRFs work well for classifying the
goal of a human in a box pushing domain where the human can select
one of three tasks, and that the correct classification can successfully
happen online before the task has completed. The approach in Bascetta
et al. [2011] similarly aims to estimate the intention of a human in
a confined space based on their motion trajectories as viewed from
an overhead camera. Based on offline observations of behaviors in the
space, HMMs are trained to model typical activities. These models are
then used to predict the most likely final locations of the human given
an initial motion trajectory, allowing a robot in the space to anticipate
where the human will be and plan its actions to ensure safety.

Nyga et al. [2011] propose a system for clustering and semantically
annotating trajectories observed in human manipulation activities. The
system learns models of human motions in the context of complete
activities and is able to robustly cluster noisy trajectory data obtained
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from real-world observations. The learned models can then serve as
predictive models for human motions.

Koppula et al. [2013] present an approach for jointly labeling hu-
man sub-activities and object affordances in order to obtain a descrip-
tive labeling of the activities being performed in RGB-D videos. They
formulate this problem as a Markov Random Field and learn the pa-
rameters of the model using a structural Support Vector Machine for-
mulation. The model also handles segmentation, computing multiple
segmentations and treating labels over these segments as latent vari-
ables. Koppula and Saxena [2016] build on this work to allow a robot to
anticipate a human partner’s future activities. Using a CRF approach
to model the seen activity of the human, and given activity and affor-
dance labels, they sample from the set of most likely target positions
of the current objects in the activity to generate future trajectories of
the human’s motion.

Wang et al. [2013] introduce the Intention-Driven Dynamics Model
(IDDM) to probabilistically model the generative process of intentional
actions with an approach that learns a model of the intentional actions
based on Gaussian Processes, and then uses a Bayesian approach to
infer intentions from observed movements. The IDDM simultaneously
finds a latent state representation of noisy and high-dimensional obser-
vations and models the intention-driven dynamics in the latent states.
They show an efficient online algorithm that allows for real-time inten-
tion inference.

Najmaei and Kermani [2010] use a neural network to predict the
next three human positions in a collaborative workspace based on
the previous five positions. They combine their prediction with an
impedance based controller avoiding the human’s predicted position,
primarily for safety applications. Mainprice and Berenson [2013] use a
swept volume, based on predictions from a Gaussian Mixture Model
(GMM) for the human pose, to define a probable space for a human
to operate in. This is then used for safe trajectory planning for close-
collaboration robot arm motions.
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6.4 Communicating Intent

Finally, we turn our attention to robots that generate actions that
will be perceived as intentional by a human collaborator. This includes
work aiming to produce robot behavior and motion trajectories that
are more natural and human-like. The field of character animation has
a long history of generating human-like behavior and communicating
intent with non-human characters. In their book “The Illusion of Life”,
Thomas and Johnston [1981] operationalize the artistic process em-
ployed by classic 2D animations. Several years later, Lasseter [1987]
wrote a seminal paper describing how these insights can translate to
3D animation. Several HRI researchers have worked toward transfer-
ring these insights from animation principles to the generation of lifelike
robot motion.

Takayama et al. [2011] use the animation techniques of anticipa-
tion and reaction to create more readable robot motions. In this work,
behaviors are created by an expert animator, showing forethought and
goal-oriented reactions to task outcomes. Similarly, Ribeiro and Paiva
[2012] present an overview of animation principles and examples of
manually creating facial expressions based on these principles.

Also inspired by animation, Gielniak and Thomaz [2012] show that
exaggerated motion, algorithmically created through a PCA analysis
of the torque trajectory, is perceptually different to a human observer.
They also find that this has an impact on directing people’s attention
to salient aspects of the interaction in a storytelling task, as measured
through eye tracking and their ability to recall task elements. Szafir
et al. [2014] present two studies examining the effects of modifying the
trajectories and velocities of flight primitives for unmanned arial ve-
hicles (UAVs) based on natural motion principles: arcing, ease in/out,
and anticipation. Their studies show these manipulations to increase
people’s ability to infer intent, and the motion was perceived as more
natural. Importantly, these last two examples represent autonomous
algorithms for generating lifelike motion based on animation principles,
and does not require an animator to manually create the motion.

Gielniak and Thomaz [2011b] show that spatiotemporal corre-
spondence (STC) of actuators in a kinematic chain is an important
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component of generating humanlike motion. Optimizing motion to in-
crease STC causes it to be recognized as more humanlike and more
accurately identified as the intended motion. Somewhat in contrast to
the above STC results, Riek et al. [2010] perform an experiment study-
ing the smoothness and precision of a humanoid robot’s gestures, find-
ing that people are faster to respond to abrupt “machine-like" gestures
compared to smooth ones.

Another factor in humanlike motion is variability. Gielniak et al.
[2013] add an additional step after the STC optimization mentioned
above. With the aim of avoiding repetitive motion, the algorithm adds
variance through exploiting redundant and underutilized spaces of the
input motion, which creates multiple motions from a single input. As
a final step, their algorithm ensures the robot can satisfy task con-
straints while maintaining the human-like qualities of STC and vari-
ance. Minato and Ishiguro [2008] also look at motion diversity for an-
droid robots. In the context of a robot reaching toward a known person
or a stranger, they modeled the variance in the person’s motion and
show that reproducing these different motions changes the way peo-
ple perceive an android. This shows that humanlike motion has this
diversity, and motion itself can communicate social context.

In the context of a robot identifying, grasping, and placing objects,
Beetz et al. [2010] first suggest the notion of legibility of motion, to help
the human predict the robot’s trajectory and goal position. They pro-
pose to use stereotypical movements based on human placement of ob-
jects to introduce legibility. Gielniak and Thomaz [2011a] have a similar
approach, with the goal of allowing a human viewer to understand the
intent of an arm gesture as quickly as possible. Their algorithm gener-
ates an anticipatory motion from a given input trajectory by extracting
the intent symbol, which is assumed to be captured in the canonical
pose of the hand throughout the gesture. The algorithm uses a motion
graph to move the production of this symbol earlier in the motion.

In addition to generating motion plans that take a human’s posi-
tion, pose, and eye gaze into account as optimization criteria, Dragan
et al. [2013] have introduced an approach where a robot can make
its intended reaching motion clear by optimizing for legibility. They
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distinguish this from predictability, which optimizes for what an ob-
server would expect given a single goal, whereas legibility optimizes
the trajectory such that a human viewer can identify the goal target as
early as possible in the face of many possible targets. A similar method
also enables solving for legibility when determining the hand position
for a robot pointing to an object [Holladay et al., 2014].

While the above-mentioned work focuses on manipulator motions,
Szafir et al. [2015] explore the design space of explicit robot commu-
nication of flight intentions to nearby viewers of UAV robots. Taking
biological flight and airplane flight as inspiration, they develop a set of
signaling mechanisms for visually communicating directionality. Kato
et al. [2015] also look at the intentionality of motion paths, but in the
context of a mobile robot in a shopping mall. Their goal is to model
polite approaching behavior. An analysis of human shop attendants
revealed their attention to intentions of nearby visitors. The author’s
modeled these behaviors, produced a robot implementation, and tested
them in a shopping mall.

The key idea for all of the above is that the robot’s intention be
transparent, letting a human partner readily infer the intended target
or goal of its action. Related to this, several have studied the opposite
of transparency: deception. For example, Dragan et al. [2015] use the
legibility optimization introduced in earlier work to do the opposite
optimization to hide the robot’s intent such that an onlooker cannot
tell until the last minute what object the robot will grab.

To conclude, this section surveyed the construct of intentional action
in computational HRI. One side of this involves representing, under-
standing and reasoning about the intentions of human collaborators, a
capacity called Theory of Mind (ToM). Simulation Theory is a popu-
lar approach to cognitive architectures for understanding intentions via
ToM. A simplified version of ToM is to only infer attention of the human
partner and the joint understanding of what object an interaction is
about. Simplified further, many approaches to intentional understand-
ing have no basis in ToM and instead focus on representing activity
with probabilistic models that allow for early prediction of action com-
pletion. This subfield is still in its infancy, and many opportunities
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remain in understanding human intentional action. Greater use of con-
text and multiple modalities stand out as important avenues yet to be
explored in depth. Additionally many approaches have focused on low-
level movement and action prediction. Moving beyond, toward higher
level activities could allow for more useful real-world predictions of
intent. Instead of only detecting which object will be manipulated sev-
eral milliseconds or seconds early, the robot could add predicting the
next five most likely object manipulation actions based on the task and
context.

The other side of intentional action is having robots generate ac-
tions that will be perceived as intentional by a human collaborator.
Our survey has found computational approaches to this involving op-
timization techniques inspired by character animation principles, and
optimization for legibility. The goal of these works is making the in-
tent of the robot as transparent as possible to the human, as early as
possible in the interaction. Future work in the domain could turn its at-
tention to the many additional animation principles that have not been
algorithmically modeled in computational HRI. Additionally, there is
a need to move beyond object-directed reaching motions when working
toward legibility, generalizing to other classes of intentional action as
well as to task-level longer-horizon expression of intent. Multimodal
communication of intent is unexplored for the most part and may also
play a larger role in future research.



7
Human-Robot Collaboration

Building on the capacity to infer, reason about, and generate inten-
tional action, a major research thrust in computational HRI focuses on
developing and studying robotic systems that engage in human-robot
collaboration. Extending the traditional planning and execution liter-
ature, researchers propose cognitive frameworks and other computa-
tional architectures enabling and supporting teamwork. Many of these
are inspired at least in part by human-human teamwork. More recently,
researchers have also started to address questions of collaborative tim-
ing and fluency, as well as the question of how to plan a single action
motion plan in the context of a human collaborator. We find that much
of the literature gives special attention to two particular collaborative
tasks: handovers of objects and collaborative manipulation. These will
be discussed at the end of this section.

7.1 Planning and Execution Frameworks for Collaborative
Activities

Making plans for action is at the core of autonomous robotics. It is
often framed as a problem of generating the optimal action for a given,
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possibly non-deterministic and partially-observed environment. Plan-
ning for a joint activity with a human necessitates a reformulation of
the notion of “environment”, as the human is not only dynamic and
non-deterministic, but also perceives the robot, adapts their own plans
and actions, and usually has a common goal with the robot. The robot
needs to plan in a way that coordinates and meshes with the human
collaborator’s activity.

Hoffman and Breazeal [2004] address this issue by building on the
notions of Shared Cooperative Activities [Bratman, 1992], Joint Inten-
tion Theory [Cohen and Levesque, 1991], and Dialog Theory [Clark,
1996]. They identify joint intentions, meshed subplans, mutual belief,
common ground, joint closure, and mutual support as foundations for
human-robot teamwork. Based on this, they present a hierarchical goal-
oriented task execution system integrating pragmatic action with hu-
man verbal and nonverbal communication, as well as robot nonverbal
communication supporting the shared activity requirements. The sys-
tem also allows for dynamic agent allocation for each task based on
the information inferred from the verbal and nonverbal channels. In re-
lated work, Lenz et al. [2008] present a human-robot collaborative sys-
tem which includes explicit modeling of joint attention, shared tasks,
and action coordination through communication. This enables multi-
modal shared factory-like activities. It primarily uses task structure to
anticipate the human’s next action.

Schrempf et al. [2005] suggest a framework for human-robot col-
laboration using human intention recognition with Dynamic Bayesian
Networks (DBN). A planner uses minimum entropy to choose between
competing human intentions and executes a hand-coded action from a
fixed set. Similarly, Schmid et al. [2007] estimate the human’s inten-
tion as a probability density function over the possible intentions. They
also use an entropy cost function to proactively execute an action when
there is a small number of competing intentions.

Shah et al. [2011] present a goal-oriented task-level controller, orig-
inally developed for multi-robot synchronization, for use in a human-
robot collaboration setting. The controller works by computing a com-
pact representation of the shared plan offline, and by then modifying
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the timing and goal-state in real-time during human-robot collabora-
tion. This allows for flexible teamwork through dynamic allocation of
sub-tasks, as well as for communication about shared and individual
goals.

One aspect of teamwork is the allocation of actions in a shared
plan, and whether actions are mutually exclusive or can be completed
by either team member. Nardi and Iocchi [2014] deal with “social plans”
— plans that have actions to be executed by the robot and actions to
be executed by a human collaborator. They model them as multi-agent
Petri Net Planners (PNP) and suggest a method by which the shared
PNP is converted to a robot-only PNP. The method includes inserting
a preparation action (e.g., approaching a human), a communication
action (e.g., asking for help), and a perception action (e.g., perceiving
the outcome of the human action). They implement their system in
an office navigation scenario where the robot needs humans to press
elevator buttons for it.

To support action sharing in joint activities, Nikolaidis and Shah
[2013] model cross-training—performing the teammate’s role instead
of the robot’s own—to improve human-robot coordination. The robot’s
policy is updated using the human’s actions under the assumption that
these would be what the human expects the robot to do. In a different
line of research, Nikolaidis et al. [2015] use a two-phase approach to
fit a robot’s collaborative policy to a human collaborator: First, the
human activity is clustered into collaborative “styles”, resulting in a
Mixed Observability Markov Decision Process (MOMDP) policy with
the style as the hidden variable. During the second phase, the robot
infers the human style and uses the appropriate policy, taking into
account the uncertainty about the style inference.

In Ben Amor et al. [2014], joint physical activities are modeled us-
ing “Interaction Primitives”, extending Dynamic Movement Primitives
(DMP) previously used for single robot learning. First, reference tra-
jectories for the human’s and the the robot’s DMP are collected from
human-human demonstration. Then, Dynamic Time Warping (DTW)
is used to estimate the human’s current phase in their DMP. The
robot’s DMP parameters are then predicted based on the predicted
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human’s DMP parameters and the current phase estimate. Finally, in
the joint music-playing domain, Hoffman and Weinberg [2011] suggest
achieving simultaneous yet reactive shared activities for an autonomous
robotic jazz-improvising robot. They propose three principles to sup-
port this goal: anticipatory action, simultaneous learning and acting,
and embodied opportunism, and implement each in a separate robotic
improvisation module.

7.2 Timing and Fluency

Extending beyond action selection and discrete meshing of single ac-
tions withing a task, the computational HRI literature has recently
started to address questions of action timing. Within that context, flu-
ency is often described as a goal or metric of joint action between a
human and a robot [Hoffman, 2013]. Intuitively, a well performing team
displays fluidly seamless interaction, but it is in practice it is difficult to
measure and optimize for fluency. Hoffman and Breazeal [2007] describe
an anticipatory action system based on a two-agent Markov Decision
Process (MDP) representation. They suggest a policy learner mini-
mizing the expected cost of acting using a Bayesian model of human
action sequences. They find that even when task efficiency was not sig-
nificantly affected, people’s sense of the collaboration was. The authors
suggest the possibility that people are sensitive to an alternative quality
they call “fluency”, and propose metrics to evaluate this quality. In a
continuation of that work, Hoffman and Breazeal [2010] present a con-
nectionist embodied cognition framework to achieve anticipation and
fluency in a continuous human-robot shared task. Modeling the human
phenomenon of perceptual simulation, sensory channels feed bottom-
up activation nodes, which are simultaneously affected by the robot’s
prediction of human action in a top-down manner. Hebbian reinforce-
ment triggers cross-modal activation leading to higher human-robot
efficiency and fluency.

More recently, researchers extended probabilistic reasoning frame-
works to include information about timing. Hawkins et al. [2013]
offer a graph representation modeling the timing of the human’s
actions as random variables, and also taking into consideration action
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preconditions and sensor errors. They present a planner using a
cost-minimization criterion. While this work is only able to model pre-
defined (and known) sequences of actions, Hawkins et al. [2014] extend
this work to hierarchical representations of tasks as AND-OR trees, us-
ing a similar random variable representation for action duration. Kwon
and Suh [2012] extend Bayesian Networks to include a random variable
for the time of an event, which is useful for modeling the uncertainty
about the human relative to both action selection and to temporal oc-
currence (“whether” and “when”). This is used by the robot to generate
anticipatory action to minimize both human and robot waiting times.

Examining the timing structure underlying turntaking in a multi-
modal interaction from a human-robot study, Chao et al. [2011] identify
the minimum necessary information (MNI) as a predictor of when to
act. Based on this insight, Chao and Thomaz [2012] address the prob-
lem of timing in multimodal human-robot interactions using Timed
Petri Nets (TPN). This structure enables the modeling of action du-
rations, dependencies, and delays. They use this model to overcome
action atomicity and enable the interruption necessary for fluent collab-
orative activities. In particular, they enable the robot to detect human
intent to act and interrupt previously started actions. The CADENCE
system [Chao and Thomaz, 2013] complements the above work by in-
tegrating elements into the TPN architecture to specifically model the
management of the collaborative “common floor”. The robot is able to
reason about seizing, holding, yielding, and auditing the floor, which
can belong to the human, belong to the robot, or be in conflict or lapsed.
It can then use functional actions or backchannel communicative acts to
regulate the common floor across multiple modalities, including speech,
gaze, and gestures.

Music is a particularly time-sensitive domain, and theorists have ex-
plained the appeal of music to humans as indicative of the importance
of human cognition about temporal patterns [Minsky, 1982]. Several
robots have been designed to move to a musical beat. Keepon, a small
non-humanoid robot synchronizing its movements to the dominant
beat in the environment, has been shown to have an effect on chil-
dren’s interactivity with the robot [Michalowski et al., 2007]. Also using
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Keepon, Avrunin et al. [2011] showed that perceptions of the lifelike-
ness of the robot and the quality of the dance can be manipulated
by small variations in the robot’s movement timing. Hoffman [2012]
presents an autonomous smartphone-based robot capable of generat-
ing dynamic choreographies based on a song’s rhythmic patterns and
genre, and this research shows that the robot’s synchronized move-
ment with music has effects on people’s opinion of the music and of the
robot’s character traits [Hoffman and Vanunu, 2013].

7.3 Human-aware Motion Planning

The frameworks discussed thus far focus on task-level action mesh-
ing between a human and robot agent working together. Collaborative
systems can also modulate each primitive action to support the joint
activity. Traditional motion planning is usually framed as a search or
optimization problem, and the criteria that deem one trajectory or mo-
tion path more optimal than another are based on task or workspace
constraints. In a human-robot collaboration, however, robots generate
actions that are viewed by a human partner. As a result, the design
of these actions should take into account people’s propensity to infer
intentions and goals, as well as their safety and overall usability. This
section complements Section 6.4, which deals specifically with generat-
ing intentional action.

Based on the insight of an observer, Sisbot et al. [2010] present an
integrated motion synthesis framework that is especially designed for
a robot that interacts with humans, dealing with perspective taking,
human-aware manipulation planning, and soft trajectory planning. The
resulting system generates robot motions taking into account a human’s
safety, their vision field and perspective, their kinematics, and their
posture comfort along with task constraints. In a similar spirit, but
focused only on safety, Ding et al. [2011] show a method based on
HMMs to predict the region of the workspace that is possibly occupied
by a human within a prediction horizon; they then use this prediction
to construct safety constraints for an industrial robot.
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In addition to taking the social context into account at planning
time, many works stress the importance that a robot’s motion planning
be able to handle interruption. Kondo et al. [2013] use gestures obtained
by motion capture of five people, parameterized with different target
poses or directions. Their experiments show that motion parameteriza-
tion increases the number of people that voluntarily interact with the
robot, and interruptibility increases the duration of these interactions.
In Xu and Dudek [2012], a robot’s reputation (defined as the human’s
trust in the robot) is modeled and updated based on the amount of
overrrides observed by a human supervisor. The robot uses this signal
to adapt its planner policy via learning.

7.4 Object Handover Actions

One of the most studied human-robot collaborative tasks is handovers,
including both handing objects to a robot and receiving objects from a
robot. In their seminal work, Edsinger and Kemp [2007] demonstrate
a full-circle system approach for a robot taking objects from humans.
The robot seeks out a human in the workspace using visual sensing,
reaches toward the person, then detects the human’s hand velocity,
using vision, and subsequently lowers its own arm stiffness in order
to accept the object until a successful grasp is detected in the robot’s
hand sensors.

Strabala et al. [2013] provide a good overview of the human-
robot handover literature. In their own work, they observe human-
human handovers, identifying three activities: carrying, coordinating,
and transfer. They also use learning via feature selection to automat-
ically predict handovers with close to 90% prediction rates. In related
work, Cakmak et al. [2011] evaluate spatial and temporal contrast in
human-robot handovers to improve the fluency of the action and find
that temporal contrast reduces human waiting times, but that spatial
contrast is not effective.

Sisbot and Alami [2012] describe a handover planner that takes
into account human safety and comfort as well as the legibility of the
robot handover trajectory. The planner first determines the object’s
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handover point by taking into consideration a human safety, visibility,
and comfort map. This then determines the object’s trajectory modeled
as a free-flying object. Finally the robot’s trajectory also takes into con-
sideration the legibility of the handover. The authors suggest planners
based on workspace grid search, as well as on Rapidly-exploring ran-
dom trees (RRT) on the robot configuration space [see also: Mainprice
et al., 2011]. In a similar vein, Williams and Breazeal [2012] take into
account object, robot reach, human grasping, and social considerations
when planning how to grasp an object for handover to a human.

Chao et al. [2013] use a people-tracker instrumented field obser-
vation to build a model of leaflet handover in a public space, looking
specifically at the relationship between gaze, arm extension, and ap-
proach. They implement their findings to build a robot handover and
gesture controller deployed on a small humanoid robot, showing an
increase in accepted leaflets by passers-by.

Chan et al. [2013] analyze the grip forces and load forces in human-
human handovers and characterize the various stages of handovers by
the grip-to-load force ratios in giver and receiver. They use their find-
ings to design a robot-to-human handover controller mimicking the dis-
covered behaviors and implement it on a humanoid robot. Subsequent
human-subject studies uncover controller parameters for the most pre-
ferred handover behaviors with users.

A number of handover works use human data to design their con-
trollers. Yamane et al. [2013] build a motion database collected from
human handovers for a data-driven method for motions involved in
receiving objects. The database holds the trajectories as a hierarchi-
cal search tree. During data collection, the correspondence between
the passer and the receiver tree nodes is recorded and then used to
generate the receiver trajectory based on the observed human passing
patterns. Huber et al. [2009] also collect data from human handovers
across a shared table, and find that an axis-decoupled minimum jerk
trajectory (MJT) models the handovers better than a regular MJT,
which in turn they found to be more effective than a trapezoid trajec-
tory in a previous study. They implemented this control model on a
robot handing over blocks to human collaborators. Studying handover
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timing, Huang et al. [2015] analyze depth sensor data of two people
engaging in a handover task. They identify two strategies used by the
person initiating the handover when the receiver is not ready to receive
the object: waiting and slowing down. They implement this insight in
a robot planner that uses these strategies when it detects delay in the
human receiver.

Combining handovers and proxemics, Mainprice et al. [2012] model
the human’s potential movement toward a navigating robot when tak-
ing into account the optimal handover position. The cost function in-
cludes the human’s eagerness to complete the handover as fast as pos-
sible, their comfort, and their mobility.

Finally, Aleotti et al. [2014] take an object’s grasping affordances
into consideration when presenting it to a human for handovers. Using
a point-cloud based recognition on eye-in-hand laser scanner data, the
robot selects the most appropriate grasp leaving the human-affordable
region of the object free. Then a human detector and trajectory planner
are used to execute the handover.

7.5 Collaborative Manipulation

Handovers are an instance of a larger body of work that looks at phys-
ical contact in human-robot interaction, sometimes dubbed “physical
HRI”. This area of research also includes the collaborative manipu-
lation of objects. In a large body of control literature, collaborative
manipulation is modeled as a dynamics and controls problem, which
we do not cover in this paper. However, in some cases the collaborative
manipulation challenge relates to the social, intentional, and nonverbal
aspects of the activity. In those cases, much of the attention has been
paid to the various roles the human and the robot can take on in the
joint activity.

For example, Evrard and Kheddar [2009] suggest a homotopy
mapping between a controller representing a leader to a controller
representing a follower for collaborative manipulation. This enables
smooth interpolation between the two control modes. In contrast,
Li et al. [2015] propose a game-theoretical approach to dynamically
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switching the robot’s role in collaborative manipulation from a leader
to a follower role. They model the shared manipulation as a two-agent
game, and use real-time force input from the human to determine the
amount of shared control exerted by the robot.

Mörtl et al. [2012] examine role allocation in collaborative manipu-
lation by analyzing human-robot cooperative carrying of a load. They
compare three role allocation strategies: static role allocation, continu-
ous adjustment of roles based on the human’s haptic expression of ac-
celeration and deceleration, and discrete adjustment of roles. In their
analysis of effort sharing, static role allocation means a feed-forward
calculation of the applied forces, similar to zero force control. In dy-
namic allocation, the perceived human feedback is taken into account
to generate robot effort in the same direction. This adjustment happens
either continuously or after a constant time interval. They demonstrate
their system on a robot co-carrying a heavy table with a human col-
laborator.

Peternel et al. [2014] suggest a tutoring-based method to teach a
robot to collaborate on a human-robot joint cross-sawing task, which
requires rapidly alternating leading and following with simultaneous
motion and compliance adaptation. A human tutors the robot first
by teleoperating the robot in collaboration with another human. The
human’s control is measured visually through force sensors and using
electromyography (EMG). After learning, the robot uses adaptive fre-
quency phase oscillators for periodicity and Dynamical Motion Primi-
tives to encode the task execution.

Unrelated to leader-follower roles, Medina et al. [2015] improve on
anticipatory control of a robot moving an object jointly with a human
by modeling the uncertainty in prediction determined by previously
experienced disagreements between the robot’s prediction and the hu-
man’s actual behavior.

In summary, the human-robot collaboration literature makes up a large
portion of computational HRI. In many ways, large swaths of the other
sections in this paper could be reasonably subordinated to the overar-
ching goal of human-robot collaboration. In this section, we have sur-
veyed works specifically dealing with collaboration, including research
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concerned with collaborative planning and execution frameworks, en-
abling robots to mesh their actions with those of a human, and ad-
dressing questions of timing and fluency in collaborative scenarios. To
a lesser extent, the literature also addresses the characteristics of mo-
tion trajectories as part of a collaboration with a human in the loop.
We found two widely tackled applications areas of this topic: the han-
dover of an object between a human and a robot and the collaborative
manipulation of objects.

While collaboration is a major research area, the application areas
and deployment contexts for these systems have been concentrated on
a few canonical problems. Most of the collaborative frameworks have
not been put to the test in any real-world environment or studied in
a long-term setting beyond the lab. Tasks have been simplified ver-
sions of the intended scenario. Implementing a collaborative planner in
a complex realistic setting would be an apt grand challenge for the
human-robot collaboration community. Furthermore, studying addi-
tional micro-collaborations beyond handovers and shared manipulation
is a wide open research area. Finally, collaborative systems are mostly
envisioned for physical tasks (e.g., assembly and manufacturing). Ex-
tending the application areas for new kinds of collaborative scenarios,
in particular those supporting the service and creative sectors, could
help generalize the lessons learned from the traditional scenarios.



8
Social Robot Navigation

Robot navigation is traditionally framed as a spatial planning problem.
In order to appropriately plan a path through an environment the robot
needs to incorporate dynamic perception of the environment and keep
a model of its current location, the environment, and its goal. The
robot will reactively detect and avoid obstacles and incorporate newly
detected obstacles into the robot’s path planning algorithms.

This framing works well for obstacles, such as a box on the ground
that wasn’t present the last time the robot traversed a particular hall-
way, but humans are a different kind of obstacle. People in an environ-
ment are there for some purpose, and their behavior is determined by
their underlying intention. They may want to interact with the robot
and the robot may have a goal to interact with them. Thus a social
robot needs to treat navigation as a social planning problem, and in
order to do so, a robot needs to reason about its own intentions with
respect to the intentions of humans in the environment. This coordina-
tion of intentions is what makes the problem inherently different from
reactive obstacle avoidance. In this section we detail recent computa-
tional HRI work aimed at endowing robots with the ability to reason
about and produce social navigation behaviors.
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In the early 2000s, a series of robotics challenges posed by the Amer-
ican Association for Artificial Intelligence (AAAI) elicited several large-
scale efforts for robots to navigate human environments [e.g., Maxwell,
2007, Michaud et al., 2007]. These attempted to take into consider-
ation the scenarios of meeting humans and navigating around them,
but still largely modeled humans as obstacles or goals and had only
rudimentary concern for social interaction.

Some recent works also deal with the issue of person tracking by
treating humans as obstacles or navigation goals without much con-
sideration for social interaction (e.g., Frintrop et al. [2010], Foka and
Trahanias [2010], Jung and Sukhatme [2010]). In some cases, the focus
is on detecting groups from dynamic sensor data [Lau et al., 2010]. This
is extended by Bellotto and Hu [2010], combining human-tracking with
person-recognition using a mixture of sensors, specifically laser range
finders and cameras. Their system parses clothes as well as faces for
simultaneous detection and recognition during navigation.

We refer the reader to Rios-Martinez et al. [2015], who present a
thorough survey of behavioral theories and concepts that inform robot
social navigation with an emphasis of proxemics. They classify social
navigation research into several categories: general proxemics and ap-
proach research; unfocused interaction, such as corridor passing and
avoidance; and focused interaction, including approach for interaction,
dialog, people-following, and side-by-side walking.

In this section, we adopt some of the same taxonomy. We discuss
representations and models for social navigation, the challenge of ap-
proaching humans, navigating side-by-side with people and following
them. We conclude with work that looks at the relationship between
social navigation and verbal instructions.

8.1 Representations for Human-Like and Human-Aware
Navigation

A framework inspiring much of the social robot navigation literature
is the Social Force Model (SFM) originally developed for analyzing
human pedestrian motion [Helbing and Molnar, 1995]. The model
frames pedestrians as affected by a combination of pseudo-physical
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forces including a controlled force in the desired movement direction,
a repulsive force induced by other pedestrians, borders, and obstacles,
and additional habituation-declining attractors towards incidental
points of interest. Ferrer et al. [2013] present a good introduction of
the SFM and a description of a method for learning the parameters
for a robotic navigation system based on the SFM.

Several works look to extend SFM in a variety of ways. Shiomi et al.
[2014] aim to replace regular collision avoidance among human pedes-
trians by achieving human-like collision avoidance based on a model of
how humans behave in crowds. They track humans avoiding a robot
that would not change its course to estimate the parameters of a Colli-
sion Prediction Social Force Model (CP-SFM). The goal is to make the
obstacle avoidance more natural-seeming and predictable. Ratsamee
et al. [2013] also present a modified SFM, adding reasoning about the
human’s expectation of interaction with the robot via their facial orien-
tation. By classifying the human’s intention into one of three categories
(approaching the robot, avoiding the robot, or expecting the robot to
avoid the human), the method generates attractive and repulsive forces
for the robot’s navigation system.

Other works introduce alternative representations not related to
SFM. Papadakis et al. [2014] describe a system that heuristically
switches between a variety of “social safe zone” models around a
human (round, egg-shaped, elliptical, laterally biased) taking into
account human behavior and the robot’s sensor certainty. Diego and
Arras [2011] suggest learning a temporal affordance map indicating a
probability distribution of where people are expected to be at various
points in time. They then use these in a traveling-salesman-like setting
with time-dependent costs to navigate a robot to minimally interfere
with the human schedule. This could be useful, for example, for a
noisy cleaning robot that would disturb people while they are working
in an office. Bellotto et al. [2013] propose a Qualitative Trajectory
Calculus (QTC), which captures the qualitative relationships between
two point agents moving on a 2D plane. The calculus represents
the sign of movement of each agent with respect to the other and a
categorical relative movement speed. They present several interactions
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represented in the calculus, and a PROLOG-like solver for QTC,
implemented on a mobile robot.

Inspired by people sharing a space, Knepper and Rus [2012] pro-
vide a heuristic-based obstacle avoidance method which works in a
distributed fashion for multiple robots with and without humans in
the space. Based on the “other’s” behavior, the robot chooses to either
react alone or rely on a cooperative avoidance strategy.

8.2 Approaching Humans

A robot wanting to interact has to first detect the right human to
interact with and then safely and appropriately approach the human
while communicating its interaction intention.

Hanajima et al. [2005] measure people’s skin conductivity (as an
indicator of stress) around a robotic arm moving according to varying
patterns and determine a simple movement rule with the aim of reduc-
ing stress: when a robot is in the vicinity of a human, it should move
more slowly. They apply this rule on an autonomous mobile robot, slow-
ing down when approaching a human. Meisner et al. [2008] use a similar
approach to develop a Galvanic Skin Response (GSR) based algorithm
to find human-friendly trajectories. Duncan and Murphy [2013] perform
this kind of analysis with UAVs, investigating comfortable approach
heights using biometrics and surveys, but did not find any difference
between a high and low approach.

Based on surveys showing a preference for lateral, specifically
right-handed approach by mobile robots [see: Dautenhahn et al.,
2006], Sisbot et al. [2007] suggest the notion of a Human Aware
Motion Planner (HAMP), taking into consideration and reasoning
about the human context. They define a “safety grid” and a “visibility”
cost grid dependent on the human’s orientation and posture (sitting
vs. standing). The planner also takes into consideration line of sight
due to obstacles. A cost-minimizing planner then finds the most
human-appropriate navigation path.

Chi-Pang et al. [2011] also develop a human-aware motion plan-
ner, expanding on Sisbot et al. [2007] by adding “harmonious rules”
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(e.g., no-collusion, no-interference, waiting, etc.) as well as the sensitive
fields of humans and other robots, taking into consideration not only
the human’s position and orientation, but also the human’s movement
vector. Additionally, the motion planner considers social hierarchies
and priorities of passing through narrow spaces.

The types of social parameters that a motion planner like HAMP
and its extensions require can be learned from data. Avrunin and Sim-
mons [2014] use human data to model socially appropriate approach
paths toward an unsuspecting human based on the human’s orienta-
tion with respect to the robot. Luber et al. [2012] learn prototypes of
relative motions between two people by clustering sequences of top-
down camera data using Dynamic Time Warping (DTW) matching.
These prototypes are then classified into social contexts, modeled as
appropriate angles of approach.

Others have used explicit demonstrations of proper behavior in or-
der to estimate model parameters. Torta et al. [2011] use a teleoperated
robot, allowing participants to stop the robot at “maximal”, “mini-
mal”, and “optimal” distances to determine parameters for the obstacle
force fields in an attractor-based navigation system. Conversely, Licht-
enthäler et al. [2013] ask participants to operate a mobile robot crossing
a human’s path and determine that human-robot distance was the best
predictor to determine the stopping condition for the robot.

A particular type of approaching behavior the research community
has focused on is how a robot should pass by a person when in a
narrow space, such as a hallway. Early work on this problem was framed
primarily as an obstacle avoidance problem. Pacchierotti et al. [2006]
refer to social distances, but mostly find that people prefer the robot
to take as wide of a detour around them as possible.

Kirby et al. [2009] model the social navigation problem as a set
of constraints to be weighted and optimized simultaneously. These
constraints include: travel distance minimization obstacle avoidance,
person avoidance (including some social aspects, such as pass-on-right
and personal space), constant velocity, and inertia. Pandey and Alami
[2010a] show a method to generate a smooth path by taking into ac-
count a number of sensor readings and rules, which are dynamically
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evaluated from sensor readings. Their system combines reasoning about
global structure, local clearance, and social situations, including single
and multiple people.

Approaching people in open public spaces poses additional unique
questions related to the environment and the multitude of people in the
scene. Kanda et al. [2009] track human behavior in a public space and
classify short trajectories into styles and speeds. They then chain those
to identify global behaviors. A robot uses these behaviors in an antici-
patory planner to choose roaming areas and make approach decisions.
Satake et al. [2013] add to this a method of specific approach trajec-
tory including monitoring the reaction of the human approach target.
Satake et al. [2014] employ a heuristic-based approach in combination
with a Support Vector Machine (SVM) learner based on observer clas-
sification. They use this to model shop territory extents with the goal
of respecting shopkeepers’ commercial space. Similarly, Kitade et al.
[2013] develop a model for shopping mall robots to find appropriate
positions to wait for human shoppers.

8.3 Navigating Alongside People

Socially appropriate person-accompanying and person-following is an-
other challenge for social navigation. In early work, Gockley et al. [2007]
compare various heuristics for path-following and direction-following
and found direction-following to be more natural and matching expec-
tations. Related, Brookshire [2010] uses Histogram of Oriented Gra-
dient (HOG) features combined with offline SVM learning of pedes-
trian features to inform a following algorithm that estimates the human
leader’s position and heading and follows at a predefined distance.

Some work tackles the harder problem of a robot following a human
side-by-side [Sviestins et al., 2007]. This is more difficult than person-
following for several reasons: First, sensing the human when standing
side-by-side is more difficult on many platforms where sensors tend
to be mounted on the robot’s front. Second, navigating side-by-side
requires the anticipation of future actions in order for the robot to
be traveling at appropriate speeds and ready for upcoming direction
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changes. Researchers addressing side-by-side navigation have typically
represented this as a collaborative planning problem. Morales et al.
[2012] develop a collaborative model based on humans walking side-by-
side. Building on that work, Murakami et al. [2014] specifically examine
the situation where the robot did not know the destination of the hu-
man. They implement a model and a motion controller that switches
between a collaborative state to a leader-follower state in which the
robot slightly falls behind until it re-estimates the collaborative nav-
igation goal. Kuderer and Burgard [2014] describe a leader-follower
framework by also modeling human social navigation that takes the
collaborative nature of the navigating pair into account. This allows
the robot to compute plans that minimize the long-term deviation from
the shared trajectory.

Koo and Kwon [2009] take a similar view of navigation as collabo-
ration and have identified the need to detect the human’s interaction
intention when crossing paths with a robot. They use K-means clus-
tering for human detection and a combination of Kalman filtering and
Hidden Markov Models to infer the human intention. Tranberg et al.
[2009] use Case-Base Reasoning to achieve a similar classification, but
utilize it not for people passing, but to position the robot at the most
appropriate position relative to the human. Finally, Topp and Chris-
tensen [2010] present a framework that serves for a robot to segment a
space into semantic regions, which have physical features, but also make
sense to humans sharing the space with the robot. They implemented
a method to represent and detect regions with human labeling.

Treating navigation as a collaboration illuminates the importance
of people being able to understand and interpret the robot’s intentions
as well (see also: Section 6.4). Several researchers have worked toward
generating intent-expressive navigation for mobile robots. Kruse et al.
[2014] address the issue of legibility of a dynamically re-planning robot
trying to avoid moving humans in its environment. Their approach
minimizes illegible erratic robot motion by allowing the robot to adjust
it velocity to avoid future collisions rather than changing trajectory.
Fischer et al. [2014] evaluate the role of beeping in a robot passing a
human. Participants were more comfortable with a beeping robot, in
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particular with a rising contour beep. This has clear design implication
for mobile robots moving around people. Trautman et al. [2015] present
a framework for a mobile robot navigating dense human crowds, in an
attempt to avoid the “Freezing Robot Problem” arising from a planner
determining that all paths are unsafe. They do so by jointly modeling
the human and the robot decision-making as a collaborative process,
under the assumption that the human’s navigation plan will also adapt
to the robot’s movement in the shared space.

8.4 Navigation and Verbal Instructions

Research on social navigation surveyed above focuses on inferring what
a human might want the robot to do based on proxemics or other
motion or attention cues given off by the human. But several works
deal with navigating based on explicit human verbal instructions.

Duvallet et al. [2013] construct a policy for a mobile robot navigat-
ing unknown environments using human natural language directions.
Kollar et al. [2013] use a knowledge base about the environment to
ground human instructions, and also update the knowledge base from
the human-robot dialog. Hemachandra et al. [2011] combine person-
following with natural language processing in the context of a guided
tour. The robot follows the human guide and uses the human’s ut-
terances to construct a semantic map of the toured space. Fasola and
Mataric [2013] model dynamic spatial relationships representing “to”,
“through”, and “around” and describe path generation methods based
on these representations. Yuan et al. [2009] use a Markov Random
Field approach in combination with a multi-level model of instruction
granularity (e.g., room names vs. object locations) to identify locations
from natural human instruction. This can then be used as input for a
waypoint route planner.

Another way social interaction plays into robot navigation is by
asking for and following human directions. The ACE system [Bauer
et al., 2009a,b, Muhlbauer et al., 2009] consists of a spoken dialog
system integrated with a deictic gesture detector. The robot updates
its navigation planning based on verbal feedback from humans along the
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path. They also present a method for translating the human direction-
giver’s frame of reference into a global frame.

In summary, based on the rich tradition of robot navigation research,
the area of social navigation is also one of the most active fields of
computational HRI. In our survey we found an abundance of computa-
tional models, algorithms, and systems. Many of the works were geared
toward real-world scenarios, including how to approach people in gen-
eral and in public settings, and how to follow or navigate alongside
people. In addition, we surveyed research combining social navigation
with verbal instruction and dialog. This enables robots to learn more
detailed context about the space they are navigating, navigate based on
the humans’ explicit intentions, and engage humans in a dialog about
the navigation they are attempting.

Most of the work presented here deals with ground-based point
robots, with only a few recent papers tackling social navigation of aerial
vehicles (AV). This tracks the general trajectory of robotics research
in the past decade, and we can expect more work in the area of social
AV navigation in coming years. There has also not been much research
combining navigation and subsequent verbal interaction aiming at a
more complete HRI scenario, which includes meshed or sequenced ap-
proach and dialog. A navigating robot can also make use of nonverbal
behaviors, both for inference and in a generative manner. We did not
find much work on the combination of navigation and kinesics, vocalics,
or haptics. As the field is growing, combining navigation with the com-
putational challenges presented in other sections of this survey thereby
presents a variety of promising research directions.



9
Robots Learning from Human Teachers

Machine learning (ML) is a highly active area of research in the fields of
computer science and robotics. Whereas much of robotics-related ML
is concerned with learning from interactions with the environment and
from data sets collected offline, researchers in HRI must address the
particular challenge of robots learning in real-time from human input.

The motivation for developing robots capable of learning from hu-
man teachers or demonstrators is twofold. First, there is an engineering
motivation: Complex behaviors can be more readily modeled from a
demonstrated behavior than formulated analytically. The second moti-
vation has to do with realistic usability: It is impossible to pre-program
robots with every needed skill or even to predict all use cases. As a re-
sult, robots need the ability to learn new skills after they are deployed.

A number of surveys have been published in the past years on the
topic of robots learning from humans [Billard et al., 2008, Brenna et al.,
2009, Chernova and Thomaz, 2014]. Due to the recency of these sur-
veys, this section is less detailed than the previous sections, and the
reader is encouraged to refer to the above references. In this section, we
provide more of a bibliographic overview of the trends we discovered in
our survey, with reference to select examples. We specifically emphasize

182



9.1. Characterizing the Human Learning Input 183

works which frame the robot learning process as a social interaction,
a framework also called Socially Guided Machine Learning [Thomaz,
2006]. Socially-guided ML is founded on the view that robots inter-
acting with people to learn new skills should utilize social behaviors
and conventions. They should participate in the teaching and learning
partnership as a two-way collaboration. Moreover, it posits that the
ability to leverage social skills is more than a good interface for people.
It can positively impact the kinds of input the human gives as well as
the underlying learning mechanisms, supporting the system’s success
in a real-time interactive learning session.

9.1 Characterizing the Human Learning Input

Treating the robot learning problem as a social interaction stands in
contrast to the traditional ML setting. Often ML algorithms make con-
servative assumptions about the distribution of input data, assuming
that examples are independent and identically distributed. To challenge
these assumptions, several works have characterized the data provided
by an end-user in the context of a social interaction with the robot.

Thomaz et al. [2006b,a] present observations about human teach-
ers in a reinforcement learning (RL) paradigm. They find a tendency
to provide guidance of future actions and less feedback for past ac-
tions, observed a positive bias in RL rewards, and also found that the
human-generated reward signal changes as the learning process pro-
gresses. The positive bias was also observed by Thomaz and Cakmak
[2009], showing that examples provided by humans contain more posi-
tive outcomes than those collected by a robot through random explo-
ration or by systematically scanning the state space. Adapting their
algorithms to account for these tendencies resulted in better learning.
In a learning from demonstration context, Nagai et al. [2008] showed
that human demonstrations towards infants tend to involve motionese
(increased motion, exaggerations and distinct pauses) that makes it
easier to segment skills and to track task-related objects.
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9.2 Extending Imitation Learning

The robotics literature has traditionally framed the problem of learn-
ing from humans as imitation learning: The human instructor moves a
robot through a trajectory, or demonstrates a set of actions that the
robot then imitates. This notion is inspired by imitation capabilities in
animals [Tomasello, 2001] and humans [Meltzoff, 1996]. Many examples
of imitation learning in robots can be found in the surveys mentioned
above [Brenna et al., 2009, Chernova and Thomaz, 2014]. Recent work
on social robot learning in the HRI community often rethinks straight-
forward demonstrations and finds new ways to transfer tasks or skills
to robots.

Cakmak et al. [2009, 2010] suggest a number of simpler social learn-
ing mechanisms that are not full-fledged imitations. These include stim-
ulus enhancement (increasing saliency of objects used by others), mim-
icking (copying actions of others), and emulation (recreating the effects
created by others using one’s own actions). Their work shows similar
learning results without the complexity of full imitation learning.

Akgun et al. [2012] proposed representing manipulation tasks with
sparse keyframes instead of trajectories sampled at a high frequency.
This resulted in a different way of demonstrating tasks: Rather than
annotating the start and the end of a recorded arm movement,
the human teacher indicates a sequence of waypoints or keyframes.
In Mohammad and Nishida [2012], bottom-up saliency is used to
segment unstructured demonstrations into a sequence of events in an
unsupervised fashion, rather than asking the human to determine an
appropriate segmentation.

Some researchers look at how to augment demonstrations with nat-
ural language instructions. In Duvallet et al. [2013] the robot learns to
follow natural language directions that refer to landmarks along the
way, from demonstrations of people following directions. Rybski et al.
[2007] combine dialog and demonstration for teaching tasks to a mobile
robot. In Mason and Lopes [2011] the user teaches a tidying-up task
through natural language instructions. Based on this interaction, the
robot learns the human’s preference of what “tidy” looks like for them.
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9.3 Social Scaffolding for Exploration

Learning from demonstrations, even when augmented as discussed in
the previous section, still falls short of the collaborative nature of social
learning in humans. For example, the field of “situated learning” looks
at the social world of a child and how it contributes to their develop-
ment. One key concept is “scaffolding”, where an adult provides sup-
port such that a child can achieve something they would not be able to
accomplish independently [Vygotsky and Cole, 1978, Greenfield, 1984].
For an ML system interacting with a human who is motivated to help,
social elements can greatly contribute to the success of the learning
process, constraining and assisting the machine.

Along these lines, Knox et al. [2013] present a framework for inter-
active shaping whereby a human teaches a robot by positive or negative
feedback signals, i.e., approval and disapproval of observed robot ac-
tions. Suay and Chernova [2011] combine learning from rewards with
anticipatory guidance.

Inspired by work in human-human tutelage, Thomaz and Breazeal
propose a framework for learning through social interaction [Lockerd
and Breazeal, 2004]. The human teacher provides instructions to sug-
gest actions to try and directs the robot’s attention towards objects by
pointing at them. In addition, the robot continually communicates its
internal state so as to maintain mutual beliefs with the human allow-
ing them to appropriately guide the learning process. In Breazeal and
Thomaz [2008], a robot’s exploration-exploitation behavior in a rein-
forcement learning framework is driven by a motivational system with
a novelty and mastery drive. The human teacher scaffolds the robot’s
learning by providing social context.

In the work of Argall et al. [2007], the human teacher critiques the
performance of a robot policy learned from previous demonstrations.
A critique is a binary label of “good” or “bad” provided by the teacher,
at each time step of the robot’s execution of a movement policy. In a
similar vein, Meriçli et al. [2012] involves corrective demonstrations in
which the teacher proposes an alternative action to be executed in the
same state or as a modification to the action previously selected by the
robot.
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9.4 Making the Learning Process Transparent

To support a situated learning interaction, a good instructor maintains
a mental model of the learner’s state—what is understood so far and
what remains confusing or unknown. This helps the teacher appropri-
ately structure the learning task with timely feedback and guidance.
The learner helps the instructor by expressing their internal state via
communicative acts that reveal understanding, confusion, and atten-
tion. Through this reciprocal and coupled interaction, the learner and
instructor cooperate to help the instructor maintain a good mental
model of the learner, and help the learner leverage from instruction
to build correct models, representations, and associations. Therefore
it is important for a socially interactive robot learner to communicate
its internal state for the human teacher through verbal and nonverbal
behaviors.

In Alexandrova et al. [2014] the robot uses visualizations to im-
prove the human’s mental model of what the robot learns from their
demonstrations. This enables the teacher to correct the learned model
by directly interacting with the visualization. Similarly, De Tommaso
et al. [2012] devise a robot learner that has the ability to project visual-
izations onto the environment to aid the learning from demonstration
process. Mühlig et al. [2012] use a more anthropomorphic attention
mechanism to give feedback to the human teacher by gazing towards
objects that are relevant for the task being demonstrated. The human
can then increase an object’s saliency by shaking or pointing to it and
decrease the saliency by hiding it.

Active Learning is a variation on supervised learning in which the
machine learner can decide which examples need to be labeled. Se-
lecting an example to be labeled communicates to a human teacher
that this instance of the problem is unknown by the current model
and that labeling it would be most informative in the learning pro-
cess. Thus the query itself gives information about the learned model,
providing transparency into the state of the learning process. Suay
et al. [2012] compared different policy learning methods and showed
that people’s perceived accuracy of the learner was highest when the
learner was active, i.e., when the learner requested demonstrations in
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particular states where it was least confident. Along this line, Cher-
nova and Veloso [2010] present an active learning approach in which
the robot identifies informative states for which the human is requested
to provide a demonstration. This allows a human to teach multiple
robots simultaneously. Chao et al. [2010] use active learning where a
robot requests labels for particular object instances. Lastly, Cakmak
and Thomaz [2012] propose three types of robot questions that can
be asked during demonstrations, based on observations of how humans
ask questions.

In summary, we surveyed the subset of computational learning research
in HRI in which the human-robot learning dyad is framed as a social
interaction. We found work along several research trajectories. Some
research attempts to characterize the nature of human-generated in-
put for machine learning algorithms and subsequently develop systems
making use of the human-specific features. Other socially-guided ML
research works to extend traditional “direct demonstration” imitation
learning by adding saliency and waypoint information, such as by way
of combining verbal instruction with demonstration. Finally, there is a
body of research that views interactive robot learning as a collaborative
tutorial. According to that view, the human provides social scaffolding
to support the learning process, and the robotic system incorporates
mechanisms of communicating the learning process for instructional
transparency.

Most systems discussed here were implemented and evaluated only
in a laboratory setting. As robots get deployed in real-world situations,
we expect new socially-guided ML systems to take advantage of the
much larger quantity of interaction data from lay users in their daily
environments. This could result in socially-guided ML systems that
make use of learning algorithms that rely on large quantities of train-
ing data, such as convolutional neural networks, which have provided
impressive results in other fields of ML in recent years. The combina-
tion of real-world deployment and large databases will certainly shed
new light on how robots can learn in a real-world social environment, a
largely unexplored challenge in the socially-guided ML literature, and
one that offers a promising next step for the community.
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Conclusion

This paper reviewed approximately ten years of computational research
in HRI, covering a period in which the field has experienced significant
growth. This expansion was evident in bibliometric trends uncovered in
the twelve venues we surveyed. In particular, we saw a steady increase
in HRI research in broad, general-interest, and established robotics
venues.

As computational HRI research has been more accepted into the
wider robotics community, specialized HRI venues have reacted by pub-
lishing a larger percentage of empirical and social-science oriented work,
struggling to maintain a balance between the two. The community
has attempted to reclaim this balance by including specialized com-
putational and systems-oriented tracks and submission areas in HRI
conferences as well as calling for computational and systems-oriented
special issues in its journals.

Our literature review shows that computational HRI research builds
on two foundations: traditional robotics research and research on hu-
man social behavior and interaction. This is reflected in the categories
we identified and in the structure of the paper. Each section builds on
established robotics fields—perception, navigation, learning, planning,
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and manipulation—but views them through the prism of human social
capacities, activities, and behaviors.

Using predetermined inclusion criteria, we found the available work
to be broad, but often biased toward popular subtopics. Sometimes
these correspond to highly pressing problems in human-robot social
interactions, in other cases they reveal low-hanging fruit, inspired by
available sensor technology and established algorithms in robotics. For
example, the work on human perception has a large component of at-
tention and engagement detection, which is a core challenge in HRI,
but it also deals widely with activity inference, a traditionally active
area in the general computer science literature.

We divided the research into two segments: foundations and high-
level competencies. Foundations include perceiving human activity, the
verbal and nonverbal interaction modalities, and affective computing
aspects of HRI. High-level competencies build on these and include
intention recognition, collaboration, navigation, and learning.

The work on verbal communication covered both content and par-
alinguistics, with an emphasis on the embodied, real-time, and situated
nature of robotics. Algorithms for nonverbal behavior covered a range of
body movements (kinesics) and spatial movement (proxemics), but we
found relatively little new work on touch interaction. Affective comput-
ing research for HRI was found to be a highly active subfield, and—in
the eyes of the general public—often synonymous with social robotics
and HRI. We surveyed work on models of emotions, expression, and
detection of emotional behavior.

Building on the foundation of intention recognition, we continued to
survey the research challenges of social collaboration, navigation, and
learning. These can be seen as HRI extensions of traditional robotics
fields. All three are vast research areas of computational HRI. We tried
to focus on the work that tackles challenges unique to the social context
and had to exclude many papers which dealt with human interaction,
but did not include a prominent social component. For collaboration,
this meant focusing on the work dealing with cognitive and executive
frameworks, timing, and the social aspects of handovers and shared
manipulation. In navigation, we focused on work that treated humans
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as more than mere obstacles, and that dealt with social spatial inter-
actions such as side-by-side navigation and approaching humans in a
socially appropriate manner. The learning literature surveyed took a
particular look at learning as a social activity rather than at learning
from human demonstration.

Any research survey of this scope is inherently limited, excludes
excellent work, and cannot be considered complete. In addition, our
choice of categorization leads to inclusion and exclusion of research that
would have been considered differently under an alternative taxonomy.
We nonetheless believe that the above survey paints a relatively repre-
sentative picture of the current state of the art in computational HRI
research, and as such can be a valuable reference for moving forward
in this field.
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