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ABSTRACT
For a wearable robotic arm to autonomously assist a human,

it has to be able to stabilize its end-effector in light of the human’s
independent activities. This paper presents a method for stabiliz-
ing the end-effector in planar assembly and pick-and-place tasks.
Ideally, given an accurate positioning of the end effector and the
wearable robot attachment point, human disturbances could be
compensated by using a simple feedback control strategy. Real-
istically, system delays in both sensing and actuation suggest a
predictive approach. In this work, we characterize the actuators
of a wearable robotic arm and estimate these delays using lin-
ear models. We then consider the motion of the human arm as
an autoregressive process to predict the deviation in the robot’s
base position at a time horizon equivalent to the estimated delay.
Generating set points for the end-effector using this predictive
model, we report reduced position errors of 19.4% (x) and 20.1%
(y) compared to a feedback control strategy without prediction.

INTRODUCTION
We present a framework for stabilizing the end-effector of

a wearable robotic arm, which is subject to disturbances aris-
ing from movements of the user’s arm to which it is attached.
The context of this work is the continued development of a wear-
able robotic “third arm” extending from a user’s elbow intended
for close range human-robot collaboration [1]. It aims to ex-
tend a user’s reach, and provide the ability for tasks such as self-
handovers, object manipulation, and bracing, as shown in Fig. 1.
In this paper we investigate the use of human motion prediction

FIGURE 1: THE WEARABLE ROBOTIC ARM IN TWO IL-
LUSTRATIVE USAGE SCENARIOS: BRACING A WORK-
PIECE (LEFT), AND SELF-HANDOVER (RIGHT).

in a planar scenario where the end-effector needs to remain static,
and compare this approach to feedback control without human
motion prediction.

Related Work
The challenge of stabilizing a wearable robotic arm is related

to that of manipulators rigidly mounted onto a mobile base. In
typical mobile manipulators, however, both robotic components
are controllable and as a result external disturbances from loads
on either of them can be compensated for by generating com-
bined cooperative motion plans for a specified task [2]. Force-
based approaches, such as potential functions tracking the pro-
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jection of the robot’s equilibrium point on the ground (Zero Mo-
ment Point) [3], and frequency-domain methods for vibration
suppression [4] have been used to stabilize the mobile base and
manipulator end-effector. A PID feedback controller with expo-
nential position error weighting for the manipulator arm has been
applied in scenarios where the mobile base is considered to be an
independent system [5]. In our case, since the wearable robot is
attached to a human arm which has structured but uncontrollable
movements, the stabilization of the end-effector’s position needs
to be performed by the manipulator alone.

This situation bears some similarity to the domain of hand-
held robotic surgery devices, where physiological hand tremors
have to be compensated for. One approach estimates tremors on-
line by modeling them as truncated Fourier series, which are fed
as an input to an open-loop controller for tool-tip position com-
pensation [6]. Another approach involves modeling hand tremors
as linear dynamic systems, with Kalman filtering for state es-
timation [7]. The hand tremor velocity estimate is considered
to be a load disturbance, leading to a feed-forward control term
added to a standard PID feedback controller. In our case, the ac-
tuators do no have feed-forward control capability, motivating a
set-point prediction strategy to compensate for latency in sensing
and actuation.

The most closely related work was presented in backpack
mounted Supernumerary Robotic Limbs (SRL) involving human
disturbance rejection through bracing [8]. Bracing involves the
SRL grasping a structure in the environment to stabilize its user
in a standing position. Human disturbances, in the form of pos-
tural sway, are modeled as external forces and torques acting on
the SRL’s base. The pose estimation of the SRL base is improved
using a bracing strategy generated by shaping the stiffness of the
manipulator. Another scenario involves a force sensing-based
drilling task in which the SRL holds a wooden piece steady while
the wearer drills into it [9]. This approach used human-human
demonstrations of the task, where the effects of the robot’s mo-
tions were condensed into force inputs, and the humans’s mo-
tions into tool-tip positions. An autoregressive moving-average
process with exogenous inputs (ARMAX) model was used to
predict the force required by the SRL to hold the workpiece sta-
ble during the task. Our scenario involves human arm move-
ments on a similar scale as the leader’s hand motion with the
SRL. However, instead of applying grasping forces to a static
workpiece or the environment, the end-effector is stabilized in
free space. We adopt a similar autoregressive approach for mod-
eling only the motion of the human arm, with its effects on the
end-effector compensated using feedback control.

Overview
In this work, we focus on a planar collaborative usage sce-

nario (Fig. 2), where the wearable robotic arm retrieves work-
pieces and brings them to the user’s workspace, assists the user

in an assembly task, and stows workpieces at a desired location.
The robotic arm grasps objects that are either handed over by
the human in free space or under-constrained on a surface, pre-
venting the adoption of a bracing strategy that requires a rigid
connection with the environment.

We first describe the robot’s design and characterize the ac-
tuators used in this scenario. After estimating the delays in sens-
ing and actuation that result in loss of performance of the robot
in maintaining a steady pose, these delays are overcome using
an autoregressive predictive model of human motion. Using this
predictor as a set-point generator, the end-effector position error
is reduced by an average of 19.4% in the x dimension and 20.1%
cm in the y dimension, compared to direct feedback control.

FIGURE 2: PLANAR COLLABORATIVE USAGE SCE-
NARIO.

SYSTEM DESCRIPTION
In this section, we describe the kinematic structure of the

robotic arm, as well as the planar setup with visual sensing for
maintaining a steady robot end-effector pose.

Robot Design
The wearable robotic arm used in this work was developed

through an iterative design process aimed at producing an SRL
for close-range collaborative tasks [1]. Analysis of the robot’s
biomechanical loads and workspace volume enhancement indi-
cated that it would useful for handover, pick-and-place, and brac-
ing scenarios while remaining within ergonomic load limits [10].

The current model of the robot has five degrees of freedom
(DoFs) plus a 1-DoF gripper (Fig. 3). Although this configura-
tion is over-constrained, having 5-DoFs instead of six, it suffices
for grasping in most pick-and-place scenarios. This trade-off is
due to weight constraints, which are critical for an arm-mounted
device. The robotic arm weighs ˜1.5 kg, with a maximum reach
of 0.63 m from the base joint. The robot’s kinematic structure is
shown in Fig. 4, and the ranges of motion for each DoF are de-
scribed using the Denavit-Hartenberg convention [11] in Table 1.
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TABLE 1: D-H PARAMETERS FOR WEARABLE ROBOTIC ARM

Degree of Freedom αi ai(m) di(m) θi

(1) Horizontal panning +90° 0 -0.08 (-180°, 180°)
(2) Vertical pitching +90° 0 0 (0°, 90°)
(3) Length extension 0° 0 [0.33, 0.45] 180°
(4) Wrist rotation +90° 0 0.045 (-180°, 180°)
(5) Wrist pitching +90° 0 0 (0°, 180°)
(6) End-effector 0° 0.135 0 0°

FIGURE 3: CURRENT PROTOTYPE OF THE WEARABLE
ROBOTIC ARM WITH 5-DOFS, AND A GRIPPER AS THE
END-EFFECTOR.

FIGURE 4: KINEMATIC DIAGRAM OF THE WEARABLE
ROBOTIC ARM.

For the purposes of the scenario shown in Fig. 2, only the hor-
izontal panning (DoF-1) and length extension (DoF-3) motions
of the robotic arm are used.

Experimental Setup
In order to study the stabilization of the end-effector in the

planar domain, we used the setup shown in Fig. 5. AprilTag
fiducial markers [12] are placed on the robot’s end-effector, and
above the axis of DoF-1 (robot base) on the attachment point
between the robot and the human arm. They are sensed with
an Orbbec Astra stereo camera for vision-based position track-

FIGURE 5: SYSTEM SETUP.

ing of these two points. The field of view of this setup is suf-
ficient for small movements of the human arm (˜15 cm), but
may not be suitable for capturing large deviations. Fig. 5 shows
the camera coordinate system O = (x,y), with base coordinates
PB = (xB,yB), and end-effector coordinates PE = (xE ,yE). Given
a detected deviation in the base position (∆xB,∆yB), the new joint
reference angle Θ1 for DoF 1, and length reference L3 for DoF-3,
are computed using the 2-D Inverse Kinematics (IK) equation:

[
Θ1
L3

]
=

[
tan−1((yE − y′B)/(xE − x′B)√

(xE − x′B)2 +(yE − y′B)2

]
(1)

where (x′B,y
′
B) = (xB +∆xB,yB +∆yB). In the current design of

the robotic arm, length extension is achieved with a rack-and-
pinion mechanism, so that L3 is linearly related to Θ3, the motor
joint angle for DoF-3. Given the current robot morphology, de-
viations in L3 can be compensated by the wearable robotic arm
to within ˜12 cm.

The challenge of wearable arm compensation and stabiliza-
tion can be viewed as a PID control problem, as shown in Fig. 6.
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FIGURE 6: HIGH-LEVEL BLOCK DIAGRAM FOR FEED-
BACK SYSTEM OF A MOTOR WITH PID CONTROLLER
AND SETPOINT REFERENCE GENERATION THROUGH
STEREO CAMERA SENSING.

The positions of the base and end-effector markers are sensed
using fiducial markers. Joint angle set points for each motor
are generated from these positions after applying equation (1),
which are then tracked by built-in closed loop controllers in the
servo motor hardware. Deviations in x and y coordinates of the
end-effector are considered separately, since for the initial pose
shown in Fig. 5, the x coordinate is predominantly affected by
DoF-1, and y coordinate by DoF-3.

ESTIMATION OF MOTOR PERFORMANCE, HUMAN
MOVEMENT, AND DELAYS

To analyze whether the robotic arm is able to compensate for
human disturbances using the feedback control strategy shown
in Fig. 6, we first perform a system characterization of the robot
using transfer function models. We then conduct an analysis of
the spectral properties of empirical human arm motion from data
collected in our setup and compare them to the bandwidth of
the motors. This is followed by the estimation of sensing and
actuation delays using a transfer function model.

Motor Models
The robot’s DoFs are actuated using ROBOTIS Dynamixel

DC servo motors [13], with built-in velocity and position PID
feedback controllers. Reference velocities for these DoFs are
chosen such that the torque loads on the motors do not exceed
20% of their maximum ratings, as specified by the manufacturer
for stable operation: 1.1 rad/s for DoF-1, and 3.0 rad/s for DoF-3,
determined from preliminary trials.

± C(s) G(s)
θR V (s) θ

FIGURE 7: BLOCK DIAGRAM FOR MOTOR FEEDBACK
CONTROL SYSTEM.

Characterization of the performance of these motors follows
a system identification procedure similar to [14]. The feedback
loop is modeled as a PID controller driving a DC motor (Fig. 7).
The DC motor is modeled as an L-R circuit [15], with voltage
V (t) related to the inductance L, winding resistance R, and cur-
rent i(t) as V (t) = Li̇(t)+Ri(t)+E(t). Here E(t) = Keθ̇(t) is
the back-EMF generated by the rotation of the motor, depen-
dent on the angular speed using the Back-EMF constant Ke.
The motor torque τ(t) is proportional to the current i(t) with
torque constant Kt and acts on the mechanical elements of the
motor with moment of inertia I and damping factor Kc, giving
τ(t) = Iθ̈(t)+Kcθ̇(t) = Kt i(t).

Applying the Laplace transform to these equations,the plant
transfer function G(s) between reference angle θ(s) and voltage
V (s) is obtained:

G(s) =
θ(s)
V (s)

=
Kt

(sL+R)(s2I + sKc)+ sKeKt
(2)

The manufacturer-supplied PID parameters have a non-zero
gain only for proportional position control, resulting in a con-
troller transfer function of the form C(s) = Kp.

The closed-loop transfer function P(s) between the motor
angle θ and a reference signal θR for each DoF takes the form of
a third-order system with no zeros:

P(s) =
θ(s)
θR(s)

=
GC(s)

1+GC(s)
=

B0

A0 +A1s+A2s2 + s3 (3)

TABLE 2: MOTOR STEP RESPONSE CHARACTERISTICS

Parameter DoF 1 DoF 3

Rise time (s) 0.133 0.294

Settling time (s) 0.539 0.489

Overshoot (%) 10.79 0.487

Peak time (s) 0.293 0.650

Bandwidth (Hz) 2.726 1.174

To find the parameters A0−2 and B0, we perform closed-
loop step response tests with joint positions recorded from built-
in motor encoders for typical reference signals given to these
actuators during end-effector stabilization (Figs. 8, 9). They
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FIGURE 8: CLOSED-LOOP STEP RESPONSE FOR DOF-1
(HORIZONTAL PANNING) FOR A REFERENCE STEP SIG-
NAL OF AMPLITUDE 0.2 RAD, MEASURED USING ON-
BOARD ENCODERS.

FIGURE 9: CLOSED-LOOP STEP RESPONSE FOR DOF-
3 (LENGTH EXTENSION) FOR A JOINT ANGLE REFER-
ENCE STEP SIGNAL OF AMPLITUDE 1 RAD, WHICH
CORRESPONDS TO A CHANGE IN LENGTH OF ˜7 CM.

are estimated using the Simplified Refined Instrumental Vari-
able method for Continuous-time (SRIVC) model identification
method [16]. The goodness of fit of these models is measured by
a normalized root-mean-squared error (NRMSE) metric, which
ranges from (−∞,1], with 1 indicating a perfect fit. The NRMSE
fit metric is 0.9169 for DoF-1 and 0.9543 for DoF-3. After model
fitting, the step response characteristics for these motors are es-
timated (Table 2). The motors have reasonably fast responses,
with bandwidths of ˜2.7 Hz and ˜1.2 Hz respectively, and settling
within ˜0.5 s to the maximum joint angle deviations likely to be

encountered in our scenario. The difference in performance is
due to a higher-end Dynamixel MX-64 motor used for DoF-1,
compared to a lower power MX-28 motor for DoF-3.

Human Arm Motion Data
Given the characterization of the motors, we now turn to the

human arm motions that need to be compensated for, analyzing
the spectral properties of a sample motion dataset.

Using the setup shown in Fig. 5, a dataset of N = 3604 points
(xB,yB) is collected, of a wearer moving their arm about a mean
position within an amplitude of ˜15 cm, with the motors of the
robotic arm held steady. The camera in our setup has a data col-
lection rate of ˜26 Hz. Fig. 10 shows an illustrative data sample.

FIGURE 10: ILLUSTRATIVE PLOTS OF THE HUMAN
ARM MOVEMENT DATASET: MOST MOTIONS ARE RE-
STRICTED TO WITHIN ˜15 CM FROM THE STARTING PO-
SITION.

The Fourier transforms of the x and y coordinates from
the dataset show that the human arm motion while wearing
the robotic arm is composed of frequencies largely below 1 Hz
(Fig. 11). The bandwidth of the robot’s actuators is greater than
1 Hz (Table 2). This indicates that the actuators should be able to
compensate for most of the disturbances introduced at the robot’s
base by the human arm in a feedback control system as shown in
Fig. 6. The effect of physiological tremors with frequencies of
10 Hz and higher is negligible, since their typical amplitudes are
of the order of 0.1 mm [6].

Delay Estimation
While the above characterization of the human movement

and motor properties suggests that a feedback control system
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FIGURE 11: FOURIER TRANSFORM PLOTS OF ROBOT
BASE POSITION (xB,yB) DATA.

would be able to compensate for human-generated disturbances,
in practice the system has a mean error of about 5.9 cm in x and
3.7 cm in y using feedback control alone (Table 4).

This performance degradation is affected by delays stem-
ming from a combination of latency in communication with the
motors (rate of ˜50 Hz), vision tracking system (rate of ˜26 Hz),
mechanical transmission delays, as well as nonlinear effects in
the motors due to Coulomb and viscous friction [17]. Improv-
ing stabilization performance requires a predictive approach to
account for these delays.

The aggregate effect of these delays can be identified using
a closed-loop step response procedure. Since the motor response
for DoF-3 has higher rise time and settling time, as well as lower
bandwidth (Table 2), it will act as the limiting factor in terms of
time delay. Therefore the third-order system in (3) for DoF-3 is
augmented with a time delay term:

P(s) =
θ(s)
θR(s)

=
e−τdsB0

A0 +A1s+A2s2 + s3 (4)

The step response is determined by tracking the visual mark-
ers for the same reference inputs given in Fig. 9, and computing
the joint angle Θ3 by applying the IK equation (1). This allows
for the estimation of the time delay τd between the motor’s in-
ternal response and detection of the same movement by the cam-
era. As before, the SRIVC system identification procedure is
applied to step response tests for DoF-3 (Fig. 12), and the delay
τd is found to be 76.48 ms, with an NRMSE model fit of 0.8479.
Compensating for this delay requires a prediction of two time
steps into the future for a sampling rate of ˜26 Hz of the camera
(sampling period of ˜38.5 ms).

FIGURE 12: CLOSED-LOOP STEP RESPONSE OF DOF
3 MEASURED BY APPLYING IK EQUATION TO DATA
FROM THE STEREO CAMERA. THE DELAY τd IS ESTI-
MATED BY FITTING A LINEAR MODEL TO THIS DATA.

AUTOREGRESSIVE MODEL
After estimating the delay present in our system, we aim

to improve end-effector stabilization performance by predicting
the robot’s base position movements over the time horizon equal
to the delay. We do so by learning an autoregressive predictive
model for the human arm motion.

As a first assumption, similar to [9], the deviations in the
x and y coordinates of the human arm movement are mod-
eled as discrete univariate time series composed of a combina-
tion of Auto Regressive (AR) and Moving Average (MA) terms
(“ARMA”), with no exogenous inputs:
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FIGURE 13: AUTOCORRELATION FUNCTIONS ρk AND rk FOR x AND y COORDINATE DATA FOR LAGS k = 1, ...,20 WITH
TWO STANDARD ERROR CONFIDENCE BOUNDS. rk DROPS OFF MUCH FASTER THAN ρk, INDICATING A PREDOMI-
NANCE OF AR TERMS.

xt =C+
p

∑
i=1

Aixt−i +
q

∑
j=1

B jεt− j (5)

Here xt is either the x or y position coordinate error, εt is a
white noise series with zero mean and σ2 variance, assumed to be
normally distributed. Past coordinates are included in this model
up to p time steps, which is the order of the autoregression (AR)
part, with coefficients Ai. Past white noise terms in the moving
average (MA) part are included up to an order q, with coefficients
B j. The constant term C is assumed to be zero, since deviations
are measured from an initial position. This model makes the
assumption that xt is stationary, i.e. its expected value and vari-
ance are independent of time. This property is verified to hold
true for our dataset using the augmented Dickey-Fuller hypothe-
sis test [18].

In the next step, we investigate which of the terms, AR or
MA, are dominant in the data. The dominance of either term
would indicate that a simplified model could be adopted instead
of a full ARMA model. To do so, we compare the sample au-
tocorrelation function, ρk with the sample partial autocorrelation
function, rk. ρk is the correlation between sample points xt and
xt−k:

ρk =Corr(xt ,xt−k) =
Cov(xt ,xt−k)

Var(xt)
(6)

The partial autocorrelation rk measures the correlation be-
tween xt and xt−k after discounting for the effects of all inter-
mediate lags xt−1, ...,xt−k+1. This measures the direct depen-
dence between a data point and its lagged value, as opposed to
ρk, which encodes the dependence of intermediate terms as well.

rk =Corr(xt − x̂t ,xt−k− x̂t−k) (7)

Here x̂t and x̂t−k are the best linear projections of xt and xt−k
onto the intermediate terms using least-squares regression.

Fig. 13 shows that ρk decays at a much lower rate than rk
for both coordinates, indicating that a data point xt depends more
heavily on past points xt−k rather than past white noise terms
εt−k [19]. This allows for the simplification of the ARMA(p,q)
model into a purely autoregressive AR(p) model:

xt =
p

∑
i=1

Aixt−i + εt (8)

To find the order p of this AR(p) model, we apply the
Bayesian Information Criteria (BIC), which optimizes a log-
likelihood goodness of fit while penalizing more complex mod-
els [19]:

BIC =−2log(L)+(p+1)log(N) (9)
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TABLE 3: Autoregressive AR(p) Model Parameters

Coordinate Parameter Value

x Ai [1.2619, -0.0722, -0.0686, 0.0050, -0.0406, -0.2326, 0.2070, -0.0372, -0.1961, 0.1999, -0.0510]

σ2 6.6439×10−5

y Ai [1.6304, -0.3713, -0.2085, -0.1065, 0.0342, -0.0755, 0.2587, -0.1537, -0.1247, 0.0516, 0.0598]

σ2 8.0532×10−6

Here L is the likelihood function, p is the order of the AR
process, and N is the number of samples. The order p = 11 is
found to have minimum BIC for both coordinates. The model
parameters Ai and white noise variance σ2 for these AR(p=11)
processes are estimated using the Yule-Walker method [20], and
listed in Table 3.

FIGURE 14: SAMPLE OF HUMAN ARM MOTION PRE-
DICTION DATA (RED), ALIGNED WITH GROUND TRUTH
(BLACK).

This model is tested on a validation dataset of N=1050 points
collected in the same setup (Fig. 5), for predictions k=2 time
steps into the future, which should compensate for system delays
of ˜77 ms. This two-step prediction matches the ground truth data
well (Fig. 14), having mean absolute errors of 1.53 cm and 0.73
cm respectively in x and y coordinates, with standard deviations
of 1.87 cm and 0.89 cm.

FIGURE 15: HIGH-LEVEL BLOCK DIAGRAM FOR FEED-
BACK CONTROL WITH THE PREDICTIVE AR MODEL
USED FOR GENERATING REFERENCE SETPOINTS FROM
SENSED STEREO CAMERA DATA.

RESULTS
Having obtained an autoregressive predictive model for hu-

man arm motion, its performance is compared to the case without
prediction when applied to end-effector stabilization.

An overview of the feedback control strategy without pre-
diction is shown in Fig. 6, with the IK equation (1) being used to
generate joint angle setpoints. This strategy is augmented with an
AR model predicting human arm motion in order to compensate
for delays in the system, illustrated in Fig. 15 with an additional
block for the predictive model after visual sensing.

TABLE 4: Deviation of End-Effector with and without prediction

Quantity Mean (cm) Std. Dev. (cm)

|∆x|nopred 5.921 3.732

|∆x|pred 4.765 3.398

|∆y|nopred 3.706 2.402

|∆y|pred 2.959 2.768

Both these strategies are implemented independently, col-
lecting N=2312 data points without prediction, and N=2750
points with the AR predictive model in use. The resulting scatter
plots of end-effector pose along with their kernel density esti-
mates are shown in Fig. 16. Table 4 reports mean and standard
deviations of the absolute errors in displacement from the starting
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(a) SCATTER PLOTS AND GAUSSIAN KERNEL DENSITY ESTI-
MATES OF END-EFFECTOR POSITION ERROR

(b) WITHOUT PREDICTION (c) WITH PREDICTION

FIGURE 16: COMPARISON OF END-EFFECTOR POSITION ERRORS WITH (ORANGE) AND WITHOUT (BLUE) THE PREDIC-
TIVE AR MODEL: (a) THE PREDICTIVE MODEL RESULTS IN LOWER MEAN POSITION ERROR IN x AND y COORDINATES;
(b), (c) SHOW THE INDIVIDUAL ERROR SCATTER PLOTS WITH 95% CONFIDENCE REGIONS.

pose with only feedback control (|∆x|nopred and |∆y|nopred), and
feedback control along with the predictive AR model (|∆x|pred
and |∆y|pred). Position errors are reduced by about 1.15 cm
(19.4%) in the x coordinate and 0.75 cm (20.1%) in the y coordi-
nate. This difference in performance improvement is likely due
to a higher power motor used for DoF-1, that primarily affects
the x coordinate.

CONCLUSION
This paper presented a method for stabilizing the end-

effector of a wearable robotic arm by accounting for human-
induced disturbances in its base position and delays introduced in
the sensing and actuation. An autoregressive model of the human
arm motion yielded accurate predictions ˜77 ms into the future,
allowing for improved stabilization performance.

Although such predictions may not be necessary in mobile
manipulation settings with powerful actuators and high-speed
cameras, weight considerations for wearable robotic devices im-
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pose a cap on the performance of motors given present power
density limitations. End-effector stabilization is achieved here
using off-the-shelf components for sensing and actuation, in a
simplified 2-D workspace with a limited field of view, account-
ing only for situations with small movements of the human arm.
Larger movements, e.g. while walking with the robot, would
require more extensive sensing, and a full kinematic predictive
model of human body motion, which may not be captured by
a time series approach, instead requiring a supervised learning
method with more training data.

Within a restricted workspace, the human arm model pre-
sented here can be adapted for predicting the full 6-D pose of the
robot’s base. We aim to extend this work to stabilizing spatial
trajectories of the end-effector while rejecting disturbances from
the wearer’s arm motion. This forms part of a broader effort into
wearable human-robot collaboration, involving the development
of high-level controllers for generating robot behaviors in close-
range collaborative tasks.
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