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Abstract: This article presents the design process of a supernumerary wearable robotic forearm
(WRF), along with methods for stabilizing the robot’s end-effector using human motion prediction.
The device acts as a lightweight “third arm” for the user, extending their reach during handovers and
manipulation in close-range collaborative activities. It was developed iteratively, following a user-
centered design process that included an online survey, contextual inquiry, and an in-person usability
study. Simulations show that the WRF significantly enhances a wearer’s reachable workspace volume,
while remaining within biomechanical ergonomic load limits during typical usage scenarios. While
operating the device in such scenarios, the user introduces disturbances in its pose due to their body
movements. We present two methods to overcome these disturbances: autoregressive (AR) time
series and a recurrent neural network (RNN). These models were used for forecasting the wearer’s
body movements to compensate for disturbances, with prediction horizons determined through
linear system identification. The models were trained offline on a subset of the KIT Human Motion
Database, and tested in five usage scenarios to keep the 3D pose of the WRF’s end-effector static. The
addition of the predictive models reduced the end-effector position errors by up to 26% compared to
direct feedback control.

Keywords: wearable robotics; human augmentation; robot design and control

1. Introduction

Wearable robotic devices can augment the abilities of the human body beyond its
natural limits, allowing users to extend their reach, lift more weight, and reduce physical
and cognitive loads in repetitive tasks. The research on wearable robotics is mostly focused
on prostheses and exoskeletons, reaching considerable maturity over the past years [1].
Prostheses serve as replacements for lost human functionality, while exoskeletons adhere
to existing human limbs, either for support and rehabilitation of unhealthy joints, or for
enhancing healthy limbs in tasks such as walking and lifting loads.

Expanding the scope of robotic augmentation, researchers have proposed supernu-
merary robotic (SR) devices for able-bodied persons, which add to human capabilities
instead of replacing or supporting existing ones. The wearable robotic forearm (WRF)
described in this article is aimed at assisting users in close-range collaborative tasks, while
remaining lightweight and maneuverable. Building upon previous conference publications
regarding its design process [2] and biomechanics [3], we provide additional descriptions
of the robot’s mechanical architecture, kinematics, and control systems. We also extend
upon preliminary work for 2D stabilization of the WRF’s end-effector previously published
in conference proceedings [4], applying more robust predictive models to 3D stabilization
scenarios involving a larger range of human motion.

One common configuration of SR devices seen in the literature is of large human-scale
arms mounted on the user’s upper body, for instance a torso-mounted pair of robotic limbs
for bracing and support of a crouching worker in settings such as aircraft manufacturing [5].
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A second common configuration is wrist-mounted robotic fingers, designed to perform two-
handed tasks with a single hand [6,7]. Wrist-mounted and torso-mounted configurations
represent two extremes in terms of application, mounting point, size, weight, and power.
The torso-mounted SR arms weigh over 15 kg and are capable of 50–70 Nm of torque,
while the additional fingers typically weigh under 0.5 kg, with torques of up to 2 Nm.
The WRF lies in between this spectrum of weight, power, and scale. Its latest prototype
weighs about 2 kg with peak torques of 6 Nm, and is aimed at tasks with lower demands
than the torso-mounted robots, leading to a smaller footprint. At the same time, its
mounting configuration on the upper-arm allows for extended reach and multi-location
work capabilities, in contrast to wrist-worn robots.

Aside from this form-factor, we envision the WRF to be an autonomous assistive
agent, able to react and mutually adapt to the user through non-verbal communication
based on body movements. This is in contrast to the prevailing paradigm in SR devices of
direct control by the user, either through biological signals such as EMG [7], or push-button
interfaces [8,9].

Owing to the novelty of this system, its design process took into account inputs from
potential users at various stages of development. Starting with a rudimentary prototype
(Model I), user surveys were conducted to generate design guidelines and requirements for
the next version of WRF (Model II), which was evaluated in terms of workspace volume
enhancement and biomechanical loads on the wearer due to the robot’s motion. Following a
pilot interaction study, the final dexterous prototype of the WRF was developed (Model III).

The biomechanical loads on the wearer due to the robot’s motion (robot-to-human)
constitute an important area of analysis for improving the ergonomics of usage. The other
side to this interaction (human-to-robot), arising due to the physical coupling between the
wearer’s arm and the robot’s base link, must also be considered. This interaction manifests
in the form of disturbances introduced in the robot’s motion plan caused by the wearer’s
independent body movements. The WRF must compensate for these disturbances in order
to successfully acheive its goal during a shared activity. We describe each of these aspects
of the WRF, and present novel methods for human-induced disturbance compensation.
The contributions of this article can be summarized as follows:

• Description of the user-centered design process for a novel configuration of a wearable
robotic supernumerary arm, resulting in three successive prototypes.

• Detailed analysis of the device’s hardware implementation and kinematics.
• Summary of the enhancement afforded by the WRF in tems of workspace volume,

and a preliminary biomechanics analysis.
• Development of human motion prediction models (autoregressive time series and

recurrent neural network), trained offline on the KIT Human Motion Database [10].
• Description of linear system identification of the actuators, and techniques for stabi-

lizing the WRF’s end-effector against human-induced disturbances, with up to 26%
improvement in performance with the inclusion of the prediction models compared
to direct feedback control.

2. User-Centered Design Process

In this section, we summarize the considerations for design and usability that were
involved in iterating through successive prototypes of the WRF.

Robotic arms designed for industrial applications typically have well defined usage
scenarios and task specifications. Since the WRF was a novel configuration, we needed
to identify contexts where it would provide the most useful assistance, and the design
features required to perform tasks in these contexts. Applying the principle of user-centered
design [11], we collected feedback from potential end-users during the development of
the robot. Starting with an initial low-fidelity prototype, three studies were conducted: an
online survey, a contextual inquiry, and an in-lab usability study. Figure 1 shows the overall
user-centered design process, that goes from abstract inquiries to concrete guidelines
informing the final design. A full description of the design process can be found in [2].
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Figure 1. Steps involved in user-centred design of the wearable robotic forearm (WRF), going from
initial concepts to an evaluated functional design.

2.1. Initial Design

To keep the weight to a minimum while effectively increasing the wearer’s “wing-
span”, the initial design included horizontal panning at the elbow and length extension as
the degrees of freedom (DoFs), to allow for usage across multiple workspaces. The WRF
Model I prototype was constructed out of acrylonitrile butadiene styrene (ABS) mounting
components and stainless steel sliders, with a two-fingered gripper based on the Yale
OpenHand T42 [12] as the end-effector, shown in Figure 2.

Figure 2. CAD model and physical realization of WRF Model I prototype with three degrees of
freedom (DoFs): (1) Horizontal panning, (2) Length extension, (3) Gripper [3] (©2018 IEEE).

2.2. Online Survey and Contextual Inquiry

After constructing the prototype, we categorized usage affinity diagrams [13] into a
taxonomy of usage contexts and functions (Figure 3) from a brainstorming session with
colleagues to the question: “What would you use a wearable robotic third arm for?”
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Figure 3. A taxonomy of contexts and functions of use for a wearable robotic arm, developed through brainstorming
sessions, open-ended snowball sampled surveys, and affinity diagram clustering, along with non-exhaustive illustrative
examples [2] (©2017 IEEE).

Using this taxonomy, an online survey was conducted on Amazon Mechanical Turk
with 105 participants (57 male, 48 female). They were first asked to rate potential usage
contexts for both classes of interaction (social/functional) with the prompts “A robotic
third arm is useful for <context>”, and “I can see myself using a robotic third arm for
<context>”. This was followed by similar prompts for rating the functions in both classes
of interaction, and concluded with soliciting open-ended responses about desired features
for the robot, and demographic details.

Participants considered the device to be more useful as a functional tool, particularly
in tasks such as carrying objects and handling hazardous materials, than for social uses
by a wide margin. They also considered it to be more useful in professional and military
settings, and least in recreational contexts.

Informed by these results, a need-finding contextual inquiry [14] was conducted
with a building construction crew on a university campus. The protocol for this inquiry
was approved by the Cornell University Institutional Review Board (CU IRB) for human
participant research (number 1611006802). The inquiry proceeded with guidance from
a supervisor who offered expert testimony about the tasks of 10 workers. During and
after observing their day-to-day tasks, workers were asked about the cognitive loads and
common frustrations, which led to the identification of three usability “need themes”:
assistance in reaching for objects and self handovers, stabilization of workpieces, and
coordination of repetitive actions.

2.3. Usability Study

To generate actionable design principles grounded in physical interaction with the
device as opposed to the previous conceptual inquiries, an in-lab study was conducted
with users wearing the robot. In total, 14 university students (9 female, 5 male) participated
in this study, which involved a semi-structured interview protocol (number 1608006549
approved by CU IRB). They began by describing a typical day in their lives, and were asked
to imagine having a third arm attached to their body in some activities at home, at work,
and performed for recreation. In order to narrow down their thought process towards the
robotic arm, the same questions were repeated after showing them pictures of a 3D model
of the prototype. Then they wore the robot and performed two scripted tasks: moving a
cup on a table while seated, and handing over the cup to the interviewer. The robot was
pre-programmed during these tasks, running an open-loop trajectory without feedback,
sensing, or adaptation. Finally, participants were debriefed and asked for improvements
and suggestions that they would like to see in future prototypes, and desirable features in
a commercial product.
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2.4. Design Guidelines

The verbal responses of the in-lab study participants were analyzed, and recurring
opinions were grouped into common themes. For instance, multiple participants com-
mented on the weight and ergonomics of the device (e.g., “It’s too heavy, definitely a strain
on my arm”), and manipulation capabilities (e.g., “Gripping capacity should be better”, “More
degrees of freedom [are needed]”).

The following guidelines and requirements for improving the WRF emerged from the
responses to the contextual inquiry and the in-lab study:

• Weight and Balance: A majority of participants suggested reducing the weight of the
robot, as well as selecting a more ergonomic attachment point to the human arm.

• Dexterity: Participants desired more dexterity than was presented to them at the
end-effector, such as vertical pivoting for improved handovers and increasing the
robot’s reach.

• Control and Autonomy: Participants suggested control schemes based on voice
commands, and intention recognition from the wearer’s movements, with varying
levels of robot autonomy based on the task scenario.

• Feedback: Most participants commented that the robot’s intentions were not clear
throughout the usability study trajectories, suggesting that its intention be shown
through lights, sounds, and voice feedback.

• Appearance: Participants suggested modeling the device on existing prosthetic de-
vices, finding the idea of another human-like arm attached to their bodies to be
discomforting. They also suggested selecting materials capable of handling haz-
ardous substances.

2.5. Design Iterations

To address the concerns in the design guidelines, two additional degrees of freedom
(DoFs) were added in the next WRF prototype (Model II): vertical pitching of the arm, and
wrist rotation before the gripper (Figure 4). Additionally, the robot’s mounting point was
shifted closer to the human elbow for improved ergonomic performance. This follows
from the weight and balance of the robot being a consistent point of discussion. These
considerations were balanced in trade-offs between ergonomics, motor power and robot
dexterity, resulting in design improvements that allowed the robot to perform tasks similar
to the contextual inquiry (Figure 5).

Figure 4. CAD rendering of the WRF Model II with five DoFs: (1) Horizontal Panning, (2) Vertical
pitching, (3) Length extension, (4) Wrist Rotation, (5) Gripper [3] (©2018 IEEE).
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(a) (b)

(c) (d)
Figure 5. Usage scenarios for the WRF: (a) one-handed self-handover, (b) stabilizing a workpiece
for bi-manual manipulation (bracing), (c) fetching an object from below, (d) assisted two-person
handover [3] (©2018 IEEE).

The vertical pitching, along with complete 360° panning, results in a full 3D workspace,
and allows the robot to reach objects placed below as well as behind the user. The horizontal
panning and vertical pitching DoFs are primarily responsible for bulk positioning of the
WRF, while length extension further enhances its reach.

In the design of the wrist and end-effector, the most important trade-off is between
dexterity and ergonomics. Articulated spherical wrists, including serial and parallel
mechanisms, have been extensively studied and deployed in commercial and research
robots [15]. A fully articular 6-DoF parallel mechanism, similar to a Gough–Stewart plat-
form [16,17], was initially considered for the WRF’s wrist. However, based on the indicative
usage scenarios discovered in the studies, a wrist with a single rotational DoF similar to hu-
man wrist pronation and supination was thought to be sufficient, along with rudimentary
grasping capabilities with a two-fingered gripper.

Following a pilot interaction study, described in detail in [3], more dexterity was
desired from the WRF’s wrist, especially in pick-and-place tasks to orient grasped objects
for handovers and drop-offs. As a result, in the final prototype (Model III), another DoF
was added before the end-effector: vertical pitching of the wrist (DoF-5 in Figure 6). The
other changes were to the place the DoF-2 motor right below DoF-1, and adding a planetary
gearset at the output of DoF-2 with a 4:1 reduction.
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Figure 6. Final WRF prototype, Model III, with six DOFs, adding a vertical wrist pitching before
the gripper.

3. Mechanical Design and Architecture

Following the progression in prototypes, in this section we describe the physical
structure, actuators, and electronics architecture in the WRF’s hardware implementation,
as well as the kinematics for Model III. Its features are summarized in Table 1.

Table 1. Features of WRF Model III.

Feature Description/Value

Robotic augmentation type Supernumerary forearm
Kinematics type Serial chain

Number of DoFs (incl.gripper) 6
Gripper type Two-finger, compliant

Weight 2.0 kg
Max motor torque 6.0 Nm

Power supply 12 V, 5 A, DC

3.1. Physical Structure

The WRF consists of an arm medical brace made of plastic, foam, and steel, used as
the base for attaching the serial chain kinematic robot structure. Material selection played
a major role towards weight reduction in the WRF from Model I to Model II. The ABS
mounting platform for the robot was replaced with a waterjet-machined sheet aluminum
structure (Figure 7a). Aluminum sliders were used instead of stainless-steel ones in the
length extension mechanism, serving as both actuation and structural elements.

The initial gripper was designed after the Yale OpenHand Model T42 [12], adapted
to constrain both fingers to move together using a single motor for weight considerations.
In Model II, gripper finger sizes were reduced, and the motor housing and adaptor were
removed, resulting in the motor body itself acting as a structural element connecting it
to the previous DoF (Figure 7b). A serial mechanism in the form of a connector directly
mounted on the motor horn of the wrist actuator was preferred over a parallel mechanism
such as a four-bar linkage [18]. This is due to the mechanical simplicity, and lack in
singularities within the workspace of a serial mechanism [19], as well as the fact that the
motor body can itself act as a structural element in the relatively low-load applications for
the WRF.

3.2. Actuation

The WRF was actuated with ROBOTIS Dynamixel servo motors. The horizontal
panning and vertical pitching DoFs used MX-64T motors weighing 135 g each, with built-in
proportional–integral–derivative (PID) feedback control for position and velocity, stall
torque of 6.0 Nm at 12 V, and maximum speed of 63 rpm. These two DoFs required the
most powerful motors since they were subject to the bulk of lifting and carrying loads.
The length extension and gripper used smaller MX-28T motors, weighing 77 g with a stall
torque of 2.5 Nm at 12 V, also with PID position and velocity control.
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The wrist rotation and wrist pitching motors were subject to the least loads during
operation, being at the end of the robot’s serial kinematic chain and not needing to generate
contact forces for gripping. As a result, lower-end AX-12A motors were used for thes DoFs,
with 1.5 Nm stall torque at 12 V, weighing 54.6 g each, and with only proportional feedback
controllers for position and velocity.

The rack-and-pinion length extension mechanism in Model I was direct-driven, with
the pinion gear mounted directly on the motor horn (Figure 7c, left). This design was
updated to a belt-driven mechanism with a 7:1 transmission ratio and separated pinion
gear, resulting in a faster extension speed and lower chance of slippage (Figure 7c, right).

Combined with aluminum sliders instead of steel, these design choices resulted in
improved ergonomics and weight distribution.

(a) Mounting platform

(b) Gripper

(c) Length extension mechanism

Figure 7. Design changes between Models I and II: (a) ABS mounting platform (left) replaced with sheet-aluminum (right);
(b) Gripper size reduced and adaptor removed; (c) Direct-driven length extension mechanism (left) replaced with a belt
drive (right).

3.3. Electronics

The motors in the WRF communicate at 1 mbps over a TTL protocol, attached serially
in a daisy-chain fashion (Figure 8). The arm was tethered, receiving control commands from
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a PC, connected using a Xevelabs USB2AX v3.2a USB to TTL Dynamixel Servo Interface.
It was powered by a 12 V, 5 A DC supply through an SMPS2Dynamixel Adapter. The
MX-64T and MX-28T motors had onboard Cortex M3 CPUs, while the AX-12A had an
Atmega8-16AU CPU.

Figure 8. System architecture of WRF electronics.

3.4. Forward Kinematics

The WRF consists of a serial kinematic chain attached to the human forearm (Figure 9).
Generally, the human arm can be represented as a 7-DoF chain [20]. However, since the
robot’s motion is unaffected by human wrist movements, we used a reduced 5-DoF model,
with three joints at the shoulder and two at the elbow.

Figure 9. Kinematic architecture of the WRF attached to the human arm.
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The forward kinematics of each of these serial chains was described with coordinate
frames derived using the Denavit-Hartenberg (D-H) convention [21], resulting in a homo-
geneous transformation matrix Tn

0 between the frame H0 at the origin (human shoulder
joint) and the frame H5 at the human’s hand:

Tn
0 =

n

∏
i=1

Ti
i−1(αi, ai, di, θi) (1)

Here n = 5 is the number of joints, and (αi, ai, di, θi) are the D-H parameters for hu-
man arms.

In Table 2, (top), the anthropometric parameters and ranges of motion have been
adapted from [20] and the NASA Man-System Integration Standards [22].

Table 2. D-H parameters for human arm and WRF Models.

Human Arm DoFs αi ai (m) di (m) θi

(1) Shoulder circumduction −90° 0 0 [0°, 180°]
(2) Shoulder adduction +90° 0 0 [−90°, 140°]
(3) Shoulder flexion 0° 0.335 0 [−90°, 170°]
(4) Elbow flexion +90° 0 0 [80°, 235°]
(5) Elbow pronation +90° 0 0.263 [0°, 180°]

WRF Model I DoFs αi ai (m) di (m) θi

(1) Horizontal panning −90° 0.254 0 [−60°, 60°]
(2) Length extension 0 0 [0.07, 0.23] 0

WRF Model II DoFs αi ai(m) di(m) θi

(1) Horizontal panning +90° −0.112 0 [−180°, 180°]
(2) Vertical pitching +90° 0 0 [−180°, 30°]
(3) Length extension 0° 0 [0.28, 0.44] 180°
(4) Wrist rotation 0° 0 0.106 [−180°, 180°]

WRF Model III DoFs αi ai (m) di (m) θi

(1) Horizontal panning +90° 0 −0.08 [−180°, 180°]
(2) Vertical pitching +90° 0 0 [−180°, 0°]
(3) Length extension 0° 0 [0.33, 0.45] 180°
(4) Wrist rotation 0° 0 0.045 [−180°, 180°]
(5) Wrist pitching +90° 0 0 [0°, 180°]
(6) Gripper 0 0.135 0 0

Similar to (1), transformation matrices Um
0 can be constructed for the WRF models

using the D-H parameters listed in Table 2, with m = 6 for Model III, and concatenating
them with Tn

0 to get the transformation Sn+m
0 for the combined human–robot model:

Sn+m
0 =

n

∏
i=1

Ti
i−1

m

∏
j=1

U j
j−1 (2)

To account for the attachment point offset between the human and robot, parameters
for the fifth DoF in Tn

0 were modified to a5 = 0.075 m, d5 = 0.016 m in Sn+m
0 .

3.5. Inverse Kinematics

The inverse kinematics (IK) problem involves finding the values of the joint variables
for a desired position and orientation (pose) of the end-effector. To find the IK for WRF
Model III for a fixed human pose, we assigned coordinate frames according to the D-H
convention, starting from the human arm attachment point, O0, to the mid-point of the
robot end-effector’s fingers, O6 (Figure 10).

The robot is over-constrained, having five articulated DoFs instead of six, resulting in
no guaranteed solutions to the general position and orientation IK problem [23].
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(a) Kinematic diagram

(b) Coordinate frames

Figure 10. (a) Kinematic diagram of the WRF with the human arm attachment point as the base link.
(b) Coordinate frames based on the D-H convention for computing the inverse kinematics.

However, in most situations, the WRF’s wrist remains vertical, with θ5 = π/2. In this
case, the position-only IK problem has an analytical solution in the first three DoFs. The
position vector ~P = (x, y, z)T between the base frame O0 and end-effector frame O6 is a
part of the transformation matrix U6

0 , and can be written in terms of D-H parameters:

~P =

x
y
z

 =

(d3 + d4 + a6)cosθ1sinθ2
(d3 + d4 + a6)sinθ1sinθ2
d1 − (d3 + d4 + a6)cosθ2

 (3)

The joint variables for the first three DoFs can be computed for a given ~P in terms of
the parameters θ1, d3, θ2:θ1

d3
θ2

 =

 tan−1(y/x)√
x2 + y2 + (z− d1)2 − (d4 + a6)

cos−1((d1 − z)/((d3 + d4 + a6))

 (4)

A more detailed analysis of the forward and inverse kinematics of the WRF, including
for variable wrist orientations, has been presented in [24]. Another approach for solving
the position-only IK problem with variable wrist orientation is by approximating the
change in joint variables (∆~θ) required for a small change in end-effector position (∆~P).
This involves determining the Jacobian matrix, J for the transformation between ~P and~θ,
followed by computing its Moore–Penrose inverse (pseudoinverse) to find the change in
joint angles [25]. Each element of the Jacobian matrix J is defined as:

Ji,j =
∂Pi
∂θj

(5)
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For the WRF’s position-only IK, J is a 3×5 matrix such that:

∆~P ≈ J∆~θ (6)

This leads to the following approximate solution for ∆~θ, involving J+, the pseudoin-
verse of J:

∆~θ = (JT J)−1 JT∆~P = (J+)∆~P (7)

This approach resulted in a fast computational method to implement IK for the WRF,
further used for end-effector stabilization.

4. Preliminary Analyses

Along the development cycle, preliminary analyses were performed with the WRF
prototypes to validate the changes in design. Model II significantly enhanced the user’s
reachable workspace volume compared to Model I and the normal human range, while
remaining within acceptable limits of biomechanical loads. These conclusions remain
valid for Model III as well, indicating that at least physically, the WRF can be an effective
augmentation without imposing unreasonable loads on the user.

4.1. Workspace Volume

With the WRF, a user can reach objects farther than the normal human range. This
enhancement was measured in terms of the total reachable workspace volume, which is
the 3D region containing all possible end-effector positions when a mechanism undergoes
its full range of motion (RoM).

Using a Monte-Carlo sampling procedure, point clouds of the end-effector positions
were collected for the kinematic chains of the human arm, and combined human–robot
chains with Models I and II, undergoing their full RoMs. These point clouds were decom-
posed into 2D horizontal slices, and numerically integrated along the vertical direction to
compute the volumes, as described in [26].

The total reachable workspace volume for the human arm alone was found to be
1.003 m3. This was enhanced to 2.389 m3 while wearing Model I, an improvement of 138%.
Wearing Model II further increased the total reachable workspace volume to 3.467 m3, an
improvement of 246%, as illustrated in Figure 11.

Figure 11. Monte Carlo simulations reveal an improvement in total reachable workspace afforded by the WRF Model II
(yellow), over Model I (blue), and the natural human arm range (red).
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4.2. Biomechanical Loads

The biomechanical loads on a wearer are an important consideration during prolonged
usage of the WRF. In typical scenarios, such as those shown in Figure 5, the human’s arm
remained fairly static, while the robot moved to fetch or grasp an object.

Building on the kinematics, as shown in Figure 12a, the dynamics of interaction
between the human arm and robot was modeled as a point force ~FR and moment ~MR,
considering them as separate bodies. The biomechanical load consisted of the force norms
at the human shoulder and elbow: ‖~FA‖, ‖~FB‖, and corresponding moment norms: ‖ ~MA‖,
‖ ~MB‖. The statically determinate scenarios, fetching from below (Figure 5c), and assisted
two-person handover (Figure 5d), were considered for this analysis. The forces and
moments in these scenarios were computed using the iterative Newton–Euler dynamics
algorithm [27].

(a)

(b) (c)
Figure 12. (a) Free-body diagram of the human arm with the robot as a point load and moment; Moment loads on the
human shoulder and elbow when using the WRF for (b) fetching an object from below, and (c) handing over an object to
another person [3] (©2018 IEEE).

The peak moment loads on the wearer’s shoulder (‖ ~MA‖) and elbow (‖ ~MB‖) during
these tasks were ~24.8 Nm and ~11.6 Nm, respectively, (Figure 12b,c). The peak force loads
were ~55.8 N at the shoulder (‖~FA‖), and ~31.3 N at the elbow (‖~FB‖). For comparison, the
human shoulder can withstand moment loads of magnitude ~85 to 130 Nm and force loads
of ~100 to 500 N, while the elbow can withstand moments of ~40 to 80 Nm and forces of
~50 to 400 N [28,29].
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The anthropomorphic parameters (link lengths, masses, inertias) for the workspace
volume computation, as well as biomechanical load analysis, have been adapted from the
NASA Man-System Integration Standards [22].

Details on the procedures for computation of workspace volumes and biomechanical
loads can be found in [3]. Concurrent to this article, we have also conducted a more
detailed inquiry into the biomechanical effects of the WRF’s motion on the user’s body
at the musculoskeletal level, and have developed trajectory optimization techniques to
generate motion plans for the WRF that minimze these effects [30].

5. End-Effector Stabilization

Having established that the WRF enhances a user’s reachable workspace volume while
remaining within ergonomic biomechanical load limits, we now consider the interaction
effects between the user and the robot. During collaborative activities, disturbances are
introduced in the robot’s motion plan due to the user’s independent arm movements. In
order for the WRF to be an effective augmentation, it needs to be able to counteract these
disturbances. In this section, we describe strategies for stabilizing the WRF’s end-effector
while it is worn by a user performing close-range tasks.

We had previously achieved promising stabilization results for small, 2D planar
movements using time series forecasting of human arm motion [4]. This approach was
extended here to include a recurrent neural network (RNN) model for human motion
prediction, and applied to 3D stabilization in five common tasks such as wiping a desk and
stowing items into drawers.

A direct feedback control strategy is outlined in Figure 13a. The joint angle reference
signals for each motor are determined from the poses of the human and WRF detected
by an optical motion capture system, as well as the desired pose of the end-effector. The
aim is to stabilize the end-effector at a static position in 3D, with the relevant joint angles
computed using the inverse kinematics described in Section 3.5.

(a) Overview of direct feedback control

(b) Feedback control with human prediction model incorporated

Figure 13. The predictive models generate motor joint angle references over a finite horizon. This
paper compares the end-effector stabilization (a) without human motion prediction, and (b) with
human motion prediction included.

It was discovered in [4] that, while the WRF’s actuators possess sufficient bandwidth
to be effective in a direct feedback control strategy even with stock tuning, in practice,
their performance is hindered due to sensing and actuation delays. A predictive approach,
where the user’s arm motion is determined over a finite horizon, was found to mitigate
these effects. Linear system identification techniques were applied to estimate the delays
and determine the prediction horizon.

Two approaches were considered for predicting human motion over this horizon for
extended tasks in 3D: an autoregressive (AR) time series model as in [4], and a recurrent
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neural network (RNN) model adapted from [31]. These models take in the poses for the
WRF and human, and generate a sequence of joint angle references over the time horizon.
Both of these approaches were trained offline using the KIT Whole-Body Human Motion
Database [10] and adapted for online predictive control through the framework shown in
Figure 13b.

5.1. System Identification

As a precursor to the application of human motion prediction for stabilizing the
WRF, the dynamic response of its motors were studied in typical usage scenarios, and
system identification was performed to recover the in situ motor parameters for Model
III. This allowed for the estimation of sensing and actuation delays in the physical system
by augmenting a delay term to the linear models, and fitting to data from the motion
capture system.

Each of the Dynamixel motors used in the robot have built-in PID controllers, apart
from the AX-12A motors for wrist rotation and pitching that only have proportional control.
Each motor receives a reference angle θR as input from the PC, driving a DC motor plant,
with output angle θ measured using built-in encoders (Figure 14a).

The plant transfer function G(s) between voltage V and output angle θ is based on an
L-R circuit DC motor model [32], resulting in a third order system in terms of parameters
α0, γ0 and γ1:

G(s) =
θ(s)
V(s)

=
α0

s3 + γ0s2 + γ1s
(8)

C(s) = Kp +
Ki
s
+ Kds (9)

During system identification, the PID controller’s transfer function C(s) used man-
ufacturer supplied values for the gains Kp = 4, Ki = 0, and Kd = 0. This resulted in the
closed-loop transfer function P(s) between the motor output angle θ and reference signal
θR to be a third-order system with no zeros:

P(s) =
θ(s)

θR(s)
=

G(s)C(s)
1 + G(s)C(s)

=
B0

A0 + A1s + A2s2 + s3 (10)

The closed-loop model parameters A0−2 and B0 were fit to the measured output
signals using the Simplified Refined Instrumental Variable method for Continuous-time
model identification (SRIVC) method [33]. No explicit delays were assumed in this transfer
function since the encoders are built-in to the motors. The plant parameters α0, γ0 and γ1
were then obtained from A0−2 and B0. Each DoF was identified individually, keeping all
other motors fixed, and the magnitudes of the step reference input signals were determined
from the usage scenarios (e.g., steps of 0.7 rad over 2 s for DoF-1 as shown in Figure 14b).

The accuracy of the identified system models was evaluated by computing the Nor-
malized Root Mean Squared Error (NRMSE) goodness of fit between the output signals
measured by the encoders and the simulated motor model outputs, for the same reference
input. The plant parameters and model fitting metrics for each DoF are listed in Table 3.

Table 3. Identified Motor Model Parameters.

DoF Motor α0 γ0 γ1 Fit (1-NRMSE)

(1) Horizontal Panning MX-64T 1078.49 572.86 48.38 0.961
(2) Vertical Pitching MX-64T 463.53 408.31 31.31 0.909
(3) Length Extension MX-28T 1134.06 674.49 29.88 0.899
(4) Wrist Rotation AX-12A 1098.43 733.68 98.76 0.919
(5) Wrist Pitching AX-12A 4041.57 1439.19 64.49 0.869
(6) Gripper MX-28T 173.35 1633.97 272.87 0.926
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(a)

(b)

Figure 14. (a) Control system schematic for the Dynamixel motors used in the robot. (b) The
responses of identified system models (red) are compared with measured motor responses (blue) to
the same reference signal (black, dashed), shown here for the horizontal panning motor.

Having obtained the open-loop plant transfer function parameters for each of the
DoFs in the WRF, we can use augment these models to estimate the sensing and actuation
delays in the overall system.

5.1.1. Delay Estimation

The first step in developing predictive models was to estimate the time horizon for pre-
dictions over which the WRF’s motors need to be controlled to compensate for sensing and
actuation delays. This time horizon h (Figure 15a) was determined by system identification
using the linear model described in Equation (10) with a delay term τd included:

P̂(s) =
θ̂(s)

θR(s)
=

e−τd sB0

A0 + A1s + A2s2 + s3 (11)

θ̂ is the motor response to an input step signal θR, reconstructed though the inverse
kinematics equations in Section 3.5 using data from the motion capture system (Figure 15b).
The other terms in the transfer function, A0−2 and B0, were obtained from the system
identification performed earlier by using the parameters in Table 3 and the stock PID
control gains Kp = 4, Ki = 0, and Kd = 0. This allowed for the isolation of system delays in
the motion capture and communication channels from the in situ motor dynamics.

The delay τd was estimated to be 86 ms using the same SRIVC method as before,
averaged across DoFs 1–3 which showed relatively slower responses due to larger loads.
This corresponded to a prediction time horizon h of about 10 time steps for the OptiTrack
motion capture system used in this work with a frame rate of 120 Hz [34].
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(a)

(b)

Figure 15. Estimating sensing and actuation delays for determining the time horizon for human
motion prediction. (a) Joint angle references need to be predicted over a finite horizon h. (b) Response
of DoF-3 measured using motor encoders (blue) and IK from optical tracking (orange) to a reference
step signal (black).

5.2. Previous Work on Planar Stabilization

In previous work [4], we had developed an end-effector stabilization strategy for a
reduced 2D scenario. The positions of the WRF’s base and end-effector were tracked using
fiducial markers and a stereo camera (Figure 16a) while the user’s arm moved in a periodic
manner in the XY plane with small displacements of ~15 cm from an initial position at
frequencies typically less than 1 Hz.
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(a) Planar system setup (b) Scatter plots and Gaussian kernel density estimates of end-effector deviation

Figure 16. (a) Fiducial markers were used to track the WRF’s base (PB) and end-effector (PE) through a stereo camera. (b) An
AR predictive model reduced the error in end-effector position (orange) compared to direct feedback control (blue) [4].
(©2019 ASME).

Using the identified linear system models through the procedure described in
Section 5.1, the step response charactersitics were estimated for the DoF-1 and DoF-3
motors (Table 4). In particular, the bandwidth for both motors was found to be above 1 Hz,
which should have been sufficient to stabilize the WRF against small, planar human arm
motions through a direct feedback control strategy (Figure 13a). However, this performance
was affected by delays in sensing and actuation.

Table 4. Motor Step Response Characteristics.

Parameter DoF-1 DoF-3

Rise time (s) 0.133 0.294
Settling time (s) 0.539 0.489
Overshoot (%) 10.79 0.487
Peak time (s) 0.293 0.650

Bandwidth (Hz) 2.726 1.174

After estimating these delays using similar linear models (Section 5.1.1), an autore-
gressive (AR) time series model for human arm motion was developed to determine the
joint angle reference signals for DoF-1 and DoF-3 using the approach shown in Figure 13b
to stabilize the end-effector in 2D. Compared to a direct feedback control approach, the AR
model helped reduce position errors by 19.4% in X and 20.1% in Y (Figure 16b).

Related work in this domain includes stabilization of SR limbs using a time-series
model of the forces and torques due to the wearer’s change in posture [35], as well as
modeling of hand tremors as Fourier series for tool-tip compensation in a handheld surgical
device [36]. This literature informed the choice of AR models for predictive control of the
WRF, both in [4], as well as being applied to the full 3D case here.

5.3. Human Motion Prediction

The estimated system time delays for the WRF served as prediction horizons for
the human motion prediction models for end-effector stabilization. The criteria for these
models were real-time (or close to real-time) prediction with optical motion capture data,
and good performance over the required controller time horizon in close-range tasks.
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Two methods were utilized for this purpose: an autoregressive (AR) time series model,
and a single-layered gated recurrent unit (GRU) adapted from [31] and modified for real-
time performance. Both of these models were trained offline using the KIT Whole-Body
Human Motion Database [10], available at [37]. It consists of a wide selection of task and
motion scenarios, with annotated recordings from optical motion capture systems, raw
video, as well as auxiliary sensors (e.g., force plates). For this work, we utilized labeled
human skeleton marker data (Figure 17) from nine tasks in the database that involved
periodic movement of the subject’s right arm. They are listed in Table 5 along with the
number of trials performed for each task, and the total number of data points with human
right arm movements extracted from all trials.

(a) Marker set for the entire skeleton. (b) Relevant points for human motion prediction.

Figure 17. Of the full set of (a) 56 markers from the KIT Whole-Body Human Motion Database, (b) we extract the relevant
points on the human right arm—C: clavicle, S: shoulder, E: elbow, W: wrist.

Table 5. Relevant task motions from KIT Whole-Body Motion Database.

Task No. of Trials Total no. of Data Points

(1) Drying right arm 15 7918
(2) Washing right arm 6 4034
(3) Taking a book from a shelf 6 825
(4) Opening pants 6 672
(5) Bringing hand to mouth 5 586
(6) Pouring from a cup 7 2758
(7) Wiping a table 6 2411
(8) Stirring a bowl 7 2157
(9) Pouring from a bottle 5 1421

The full-body skeleton marker set consists of 56 points, out of which 10 are relevant
for prediction of human right arm motion, with the positions on the body determined by a
weighted sum of the individual 3D positions of the markers (Figure 17b): 3 for the clavicle
(C), 3 for the shoulder (S), 3 for the elbow (E), and 4 for the wrist (W).

Three relative position vectors were generated from the four body points: ~v1 = ~CS,
~v2 = ~SE, and ~v3 = ~EW. This allowed for prediction of movements of a particular body
segment independent of its previous neighbor, and improved the training accuracy of
the models.

5.3.1. Autoregressive Time Series Model

As in [4], the time series model started with the initial assumption of an Autoregressive
Moving-Average (ARMA) process:
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xt = C +
p

∑
k=1

Akxt−k +
q

∑
j=1

Bjεt−j (12)

Here xt is a discrete univariate series, composed of a constant term C, past terms xt−k
weighted by coefficients Ak for lag k (AR term), and past white noise terms εt−j weighted
by the coefficients Bj. The number of past terms, p and q determine the orders of the AR
and MA parts, respectively.

Each component of the relevant body vectors v1, v2 and v3, was considered to be an
independent univariate series. The stationarity of these series was verified with augmented
Dickey–Fuller hypothesis tests [38].

The autocorrelation (ρk) and partial autocorrelation (rk) functions at lags k were
computed for these series. There were sharp drop-offs in rk compared to ρk over successive
lags for each component of the body vectors, illustrated Figure 18 for the X component of
v2. This indicated that the ARMA processes could be simplified into purely autoregressive
(AR) models [39]:

xt = C +
p

∑
k=1

Akxt−k + εt (13)

Figure 18. Sample autocorrelation and partial autocorrelation functions for the component v2,x from
relevant motions in the KIT Database for lags k ∈ [1, 30].

The model order p for each of the nine components in the body vectors was determined
using the Akaike Information Criterion (AIC), a maximum-likelihood measure of the
goodness of fit [40]. The AIC was computed for model orders up to 30 for each of the nine
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series, and the one with minimum AIC was selected as p for that series. The minimum
AIC values were obtained at different model orders for each series, ranging from p = 18
to p = 25. The model parameters Ak, C, and εt were determined using the Yule–Walker
method [41], trained on the task motions listed in Table 5.

5.3.2. Recurrent Neural Network Model

While an AR model is able to forecast human motions through local predictions, it
does not capture dependencies over a longer time period, or encode structural information
about the correlations between body components over time. To account for these factors
and improve on the predictions from the AR models, we used a recurrent neural network
(RNN) model for human arm motion prediction, and compared the performance between
the methods.

Independent of robotics, RNNs have been applied extensively for human motion
prediction, including architectures with Long-Short Term Memory (LSTM) cells [42], and
structural RNNs that encapsulate semantic knowledge through spatio-temporal graphs [43].
These approaches include multiple recurrent layers as they are aimed at offline prediction
of the entire human skeleton, and task classification in general motion scenarios. As the task
scenarios for WRF stabilization involve periodic motions and require prediction of only the
wearer’s arm, we used a simpler model with a sequence-to-sequence architecture [44] and
a single Gated Recurrent Unit (GRU), as proposed in [31], which also includes a residual
connection for modeling velocities. Compared to an AR model, this resulted in higher
prediction accuracy of human arm motion, and improved the end-effector stabilization in
most task scenarios.

The schematic of the RNN model is shown in Figure 19a. It consists of an encoder
network that takes in a 9-dimensional input of the body vectors, [~v1, ~v2, ~v3], 50 frames
at a time from the KIT database or motion capture system, and a decoder network that
converts the output from a single GRU cell with 1024 units into 9-dimensional predictions
over k steps. Based on the estimated system delay, we set k = 10, and the learning rate to
be 0.05 for batch sizes of 16, as specified in [31] for predictions up to 400 ms. This RNN
model was trained on the KIT Database motions listed in Table 5, and converged at about
5000 iterations, as shown in Figure 19b with Mean-Squared Error (MSE) losses.

(a) Structure of RNN model (b) Training and validation losses for the RNN model

Figure 19. (a) The RNN model consists of an encoder, GRU cell, and spatial decoder. (b) It was
trained for 5000 iterations on the KIT Database motions.

5.3.3. Model Evaluation

Both models were evaluated on the relevant motions from the KIT Database listed
in Table 5. They were trained offline using all but two trials for each task, with one of
remaining trials serving as the validation set, and the other as the test set. The training
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set was expanded to four times its original size by adding Gaussian white noise with
standard deviation 1 cm to each of the nine components of the body vectors, leading to
89,864 data points for training. The test and validation sets had 18,922 and 15,042 data
points, respectively.

The Root-Mean-Square (RMS) prediction errors were computed on the test set for both
models, and are listed in Table 6. While the RNN model did not improve upon the AR
model for every component, it reduced the prediction errors in the components with the
worst performance using AR (Figure 20). The RNN model also performed better overall,
with an average RMS error of ~0.90 cm, compared to ~1.25 cm for the AR model. Figure 21
shows that while the RNN model tended to overshoot the ground truth, and be offset from
it, the tracking of overall motion trends was better than the AR model.

Table 6. Predicting human body vectors from KIT Database, RMS Errors (cm).

Shoulder Elbow Wrist
v1,x v1,y v1,z v2,x v2,y v2,z v3,x v3,y v3,z

AR Model 0.16 0.23 0.37 1.47 2.61 0.36 3.38 2.02 0.64
RNN Model 0.53 0.42 0.43 0.90 1.42 1.41 2.08 0.57 0.31

Figure 20. RMS errors in the AR and RNN models for prediction on the KIT Database motions.
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(a) (b)

(c)

Figure 21. Predictions from the AR model (red) and RNN model (yellow), k = 10 time steps ahead for body vector v2,
realigned with ground truth (blue). (a) v2 : X-component. (b) v2 : Y-component. (c) v2 : Z-component.

5.4. Implementation on the WRF

Having obtained two predictive models for human arm motion that performed well
on the KIT Database, they were applied for stabilization of the WRF’s end-effector at an
initial pose when subjected to disturbances due to movement of the user’s right arm. For
validation of these models, we considered five task scenarios, shown in Figure 22, that
involved periodic arm movements of relatively small magnitude—(a) tracing a line of
length 10 cm, (b) tracing a circle of diameter 10 cm, (c) wiping a desk top, (d) painting
with small brush strokes on a canvas, and (e) placing ten objects into shelves of a table-top
drawer unit. Each task was performed for ~5 min, with each iteration lasting between 5 s
(for tacing lines) and 30 s (for placing objects) depending on the complexity of the task. The
initial end-effector pose was selected to be on the right of the user and below them, so as to
not impede the task.

Optical markers were placed on the user’s right hand and elbow, as well as on the
WRF’s end-effector and near the DoF-1 motor (Figure 23).

These markers were tracked at 120 Hz using an OptiTrack motion capture system [34].
The raw marker position data was smoothed and filtered using an IIR low-pass digital filter
with transfer function coefficients for 6 Hz normalized cutoff frequency [45], following the
techniques discussed in [46,47].

In all the scenarios shown in Figure 22, the body vector ~v1 was assumed to be constant
in each task, as the human shoulder and torso remained almost stationary at their initial
positions. The other relevant points, B (base position of the WRF), and R (position of the
end-effector), to be tracked are shown in Figure 23, We aimed to keep the end-effector
static at the initial point R = R0 at the start of each task. If the user’s arm were to move,
the end-effector would also move by an amount ∆~P = Rt − R0 at time t. To generate
appropriate setpoints for the WRF’s motors, ∆~P is converted from the a global frame G
(fixed lab frame) to the robot’s base frame B. Using the convention TB

A for the homogenous
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transformation of the pose of frame B as seen in frame A, we need to convert from TR
G to

TR
B . Using the elbow frame E as an intermediate,

TR
G = TE

GTB
E TR

B (14)

TR
B = (TB

E )
−1(TE

G)
−1TR

G (15)

(a) (b)

(c) (d)

(e) (f)
Figure 22. Scenarios in which the WRF’s end-effector was stabilized while the user performed a task. (a) Tracing a line. (b)
Tracing a circle. (c) Wiping a desk. (d) Painting on a canvas. (e) Setup for stowing ten items into a drawer unit. (f) Stowing
items into the drawers.
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Figure 23. Tracked markers and positions for determining the WRF’s motor joint angles.

The transformation between the robot base B and elbow E is constant, while the
transformation TE

G consists of two variable parts: the rotation matrix RE
G between the elbow

and ground frames, and the position of the elbow, ~PE which is tracked directly by the
motion capture system. RE

G is the rotation matrix that takes the unit vector along the local
X-axis, î = [0, 0, 1]T , and aligns it with the unit vector along the human forearm, v̂3, in
the ground frame. Using the approximate method for position-only inverse kinematics
(Jacobian pseudoinverse) discussed in Section 3, the change in WRF joint variables can
be determined:

∆θ = J+(−RR
B ∆~P) (16)

At time t, this gives the desired setpoint reference for each motor used for direct
feedback control:

θ̂d[t] = θd[t0] + ∆θ (17)

Following the procedure shown in Figure 13b, the predictive models were used to
generate setpoint references over a time horizon of ~86 ms for each motor in the WRF:

θd[t + ∆ti] = θ̂d[t] + ∆θ̃i , i ∈ [1, k] (18)

For a stereo camera frame received at time t, a sequence of k = 10 joint angle references
θd were sent to each motor, with ∆ti ∈ [0, 86] ms, i ∈ [1, k]. As described above, θ̂d[t] is the
desired joint angle in direct feedback control, computed using inverse kinematics for the
detected human and robot poses at time t. The predictions from the AR and RNN models
are represented as residuals ∆θ̃i added to θ̂d[t].

During implementation, it was found that the AR model could generate predictions
nearly in real time, though requiring a few seconds of sensor data collection to initialize
the predictors at the start of each task. In comparison, the RNN model had lags of up to
~50 ms due to computational bottlenecks when predicting over the specified time horizon.
To account for these lags, the pre-trained RNN model was executed in parallel with the AR
model. Until a prediction was received from the RNN model, the AR prediction was used
for computing θd. Depending on the amount of lag, determined through time stamps, a
corresponding number of RNN predictions were discarded (typically the first 5–6 terms),
and the remaining ones were added to the sequence ∆θ̃i to be sent to the motors.

This implementation of human motion prediction (RNN + AR) reduced the mean
error in end-effector position by up to ~26 % over direct feedback control, while the AR
model alone was able to improve upon direct feedback control by up to ~19 %, as listed in
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Table 7. Figure 24 shows that the performance of all three control methods varied according
to the task, with more structured and periodic motions such as tracing a line and circle
showing better stabilization performance compared to motions with less structured or
periodic behavior such as stowing items into a drawer.

Table 7. End-Effector position errors in 3D.

Task

Mean Error in End-Effector Position (cm)

Direct Control AR Prediction RNN + AR Prediction

Line Tracing 5.02 4.32 (−13.94 %) 4.54 (−9.56 %)
Circle Tracing 6.92 5.87 (−15.17 %) 5.09 (−26.44 %)

Wiping 11.01 8.91 (−19.07 %) 8.74 (−20.62 %)
Painting 14.30 12.04 (−15.82 %) 11.45 (−19.95 %)
Stowing 15.87 14.74 (−7.12 %) 12.65 (−20.28 %)

Figure 24. Summary of end-effector stabilization position errors.

6. Conclusions

This paper summarized a novel configuration for a wearable supernumerary robotic
(SR) arm aimed at close-range human–robot collaboration, and studied the performance of
human motion prediction for stabilizing its end-effector in illustrative usage scenarios.

6.1. Design

The robot’s design process was driven by usage contexts determined through taxon-
omy development and surveys; specific functions were then derived from need-finding
through contextual inquiry with construction workers, and further informed by a labora-
tory study with a physical robot prototype. This process was published earlier in conference
proceedings [2]. These led to a robot design that increased the human-reachable workspace
by 246%. Furthermore, it supported picking up objects for self-handovers, assisting in
human-human handovers, and providing object stabilization. The design added action
capabilities while being low in weight and well-balanced enough to stay within human
biomechanical load limits. These results were published earlier in conference proceedings
as well [3]. Since then, following further interaction studies, another design iteration led to
a more dexterous prototype of the WRF, Model III, with five articular DoFs. Additional
descriptions of the mechanical architecture, forward and inverse kinematics, and actuation
systems of the WRF have been provided here.
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6.2. Predictive Control

Linear system identification was performed to estimate the delays in sensing and
actuation used as time horizons for the human motion prediction models. Previously
published work involved 2D planar stabilization of the WRF’s end-effector with small
human movements [4]. The primary contribution of this article is the extension of this work
to 3D scenarios with a wider range of human movements. The human motion prediction
models took the form of an autoregessive time series and a recurrent neural network, both
trained and validated offline on the KIT Human Motion Database.

These trained models were tested directly on the physical system, resulting in lower
mean position errors of the end-effector compared to direct feedback control. However, the
absolute improvement in performance was relatively small for the tasks considered here.
A potential solution could involve using more powerful and heavier actuators with greater
bandwidths, though resulting in larger loads borne by the user during operation. Along
with vision-based sensing, systems with wearable sensors such as Inertial Measurement
Units (IMUs) mounted on the human and robot might help improve performance.

6.3. Future Work

Extensions of this work can include stabilizing over a trajectory in free space, over
bulk human motions such as walking, handling heavier grasped objects, and wider human
subjects studies to explore variations across tasks and users. These scenarios would be
even more challenging due to greater uncertainties in human motion, requiring sensing
and actuation with minimal delay. Having the actuation and control systems off-board [48]
would, for a limited workspace, sidestep the trade-off between the motor power and
weight of an SR device. To allow for a wider range of users for these systems, the length
parameterization of the body vectors needs to be non-dimensionalized during training
and testing of the predictive models. This can be achieved by separating the positions and
orientations of the body vectors, and performing initial calibrations for each user.

While this article addresses the design challenges and stabilization of an SR device
in close-range tasks, there are also challenges related to the human–robot collaboration
aspects that remain to be studied. The work presented here summarizes the foundations
for a research platform to achieve fluent performance in closely entangled human–robot
collaborative setups, while accounting for the uncertainty introduced as a consequence of
the wearer being an integral part of the system.
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