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Abstract
We present an analytical solution for the inverse kinematics (IK) of a robotic arm with one prismatic joint and four
revolute joints. This 5-DoF design is a result of minimizing weight while preserving functionality of the device in a
wearable usage context. Generally, the IK problem for a 5-DoF robot does not guarantee solutions due to the
system being over-constrained. We obtain an analytical solution by applying geometric projections and limiting
the ranges of motion for each DoF. We validate this solution by reconstructing randomly sampled end-effector
poses, and find position errors below 2 cm and orientation errors below 4°.
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1. Introduction
We present an analytical solution for the inverse kinematics
(IK) of a robotic arm with five degrees of freedom (DoFs). The
kinematic structure of the robot is RRPRR, where “R” denotes
a revolute joint and “P” denotes a prismatic joint. Our use
context is the development of a wearable robotic “third arm”
intended for close range human-robot collaboration. It aims to
extend a user’s reach, and provide the ability for manipulation
below and behind the user in tasks similar to those shown in
Fig. 1. We find that a 5-DoF structure (excluding gripper) is
sufficient for performing these tasks while keeping the weight
to a minimum (Fig. 2), as indicated by results from an iterative
user-centered design procedure [1].

Closed-form analytical IK solutions, and numerical solu-
tions exist for general robotic arms with 6-R joints [2, 3, 4].

Figure 1. The wearable robotic arm in two illustrative usage
scenarios: self-handover (left), and handover to another
person (right)

When possible, analytical methods are preferred over numeri-
cal ones due to faster computational speeds and the ability to
predict the existence of solutions [5].

However, the IK problem for a 5-DoF robot is over-constrained,
and no general solution exists [6]. Gan et al. [7] have devel-
oped an analytical IK solution for poses reachable by a 5-R
Pioneer 2 robotic arm. We extend their approach to the case
where the robotic arm includes a prismatic joint (Fig. 3), and
present an analytical solution along with the constraints on it.1

We evaluate the numerical quality of this solution by recon-
structing a randomly sampled set of end-effector poses within
the robot’s workspace bounding box. We obtain average posi-
tion errors below 2 cm, and orientation errors below 4° in this

1The code for this solution can be found here: http://github.com/
vighv/5DoF_IK
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Figure 2. Wearable robotic arm with labeled DoFs: 1)
Horizontal panning, 2) Vertical pitching, 3) Length extension,
4) Wrist rotation, 5) Wrist pitching, and 6) End-effector

reconstructed set.

Figure 3. Kinematic diagram of the wearable robotic arm.

2. Forward Kinematics Equations
Forward Kinematics (FK) provides the mapping from a robot’s
joint positions to the pose of the end-effector. We assign co-
ordinate frames to each link of the robotic arm, and derive
the FK equations using the Denavit-Hartenberg (D-H) con-
vention [8].

The base frame O0 in our case lies at the top of horizontal
panning DoF (Fig. 4), and the final frame O6 is attached
to the end-effector, lying at the mid point of the gripper’s
fingers. The D-H method uses four parameters: α,a,d and θ

to specify the relationship between frames (Table 1). Using
these parameters, a homogeneous transformation matrix T i+1

i
is defined for the pose of frame i+1 as seen in frame i:

T i+1
i =


cosθi −sinθicosαi sinθisinαi aicosθi
sinθi cosθicosαi −cosθisinαi aisinθi

0 sinαi cosαi di
0 0 0 1

 (1)

The joint variables are θi for the four revolute joints, and
d3 for the prismatic joint. The end-effector is fixed with
respect the wrist pitching DoF. However, it is listed separately
in order to decouple it from wrist pitching for ease of solution
of the inverse kinematics, as in [9].

Figure 4. Schematic of the robotic arm and associated
coordinate frames: O0 is the base frame, O6 is the
end-effector. Frame O1 is coincident with O2, and O4 is
coincident with O5.

The transformation T 6
0 , between the base frame O0 and

the end-effector frame O6 can be found by successive multi-
plication:

T 6
0 = T 1

0 T 2
1 T 3

2 T 4
3 T 5

4 T 6
5 (2)

Expanded out in terms of individual elements:

T 6
0 =


R1x R2x R3x Px
R1y R2y R3y Py
R1z R2z R3z Pz
0 0 0 1

 (3)

The rotation between these frames is described by R =
[~R1,~R2,~R3] ∈ SO(3), where SO(3) is the 3D rotation group
consisting of 3×3 orthogonal matrices with unit determinant.
~P = [Px,Py,Pz]

T ∈ R3 describes the translation between these
frames. We will denote cosθi as ci and sinθi as si in the rest
of this paper. The length parameters for the robot are l1, l2
and l3, which correspond to d1, d4 and a6 respectively from
Table 1. There are twelve equations that constitute the forward
kinematics:

R1x = c1s2s5− c5(s1s4 + c1c2c4) (4)
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Table 1. D-H parameters for the wearable robotic arm

Degree of Freedom αi ai(m) di(m) θi
1) Horizontal panning +90° 0 -0.08 (l1) (-180°, 180°)
2) Vertical pitching +90° 0 0 (0°, 90°)
3) Length extension 0° 0 [0.33, 0.45] 180°
4) Wrist rotation +90° 0 0.045 (l2) (-180°, 180°)
5) Wrist pitching +90° 0 0 (0°, 180°)
6) End-effector 0° 0.135 (l3) 0 0°

R1y = c5(c1s4 − c2c4s1)+ s1s2s5 (5)

R1z =−c2s5− c4c5s2 (6)

R2x =−c4s1− c1c2s4 (7)

R2y =−c1c4− c2s1s4 (8)

R2z =−s2s4 (9)

R3x =−c1s2c5− s5(s1s4 + c1c2c4) (10)

R3y = s5(c1s4 − c2c4s1)− s1s2c5 (11)

R3z = c2c5− s2c4s5 (12)

Px = l2c1s2− l3(c5s1s4 + c5c1c2c4)+ l3c1s2s5+d3c1s2 (13)

Py = l2s1s2+ l3(c5c1s4 + c5s1c2c4)+ l3s1s2s5+d3s1s2 (14)

Pz = l1− l2c2− l3c2s5− l3c4c5s2−d3c2 (15)

3. Inverse Kinematics
The inverse kinematics problem involves finding the values of
the joint variables for a desired position and orientation (pose)
of the end-effector.

We start with the solution to the horizontal panning angle
θ1 using the geometric projection method described in [9]

Figure 5. Projecting the position of O5 onto the XY -plane of
the base frame O0 to solve for θ1.

and [7]. As shown in Fig. 5, θ1 is the angle between the pro-
jection of ~P′ = ~O0O5 onto the XY -plane, and the X-axis of the
base frame O0. ~P′ can be obtained by using the transformation
between O5 and O0:

T 5
0 = T 6

0 [T 6
5 ]
−1 =

[
~R′1 ~R′2 ~R′3 ~P′
0 0 0 1

]
(16)

The components P′y and P′x of ~P′ can be found from the
corresponding components in the last column of T 5

0 . The
relation between θ1 and the projections of ~P′ is as follows:

tanθ1 =
P′y
P′x

=
−l3R1y +Py

−l3R1x +Px
(17)

θ1 can be found using the four-quadrant inverse tangent
function atan2(x,y), as it lies in the desired range of (-180°,
180°). Also note that θ2 is never fully vertical, since we have
restricted the range of DoF-2 in the open interval (0°, 90°).
This ensures that a solution for θ1 always exists, since O0, O1,
O2 and O5 are never collinear.

The solution strategies for other joint variables can be
grouped into two cases, depending on whether R2z 6= 0 or
R2z = 0, which correspond to whether the links of the robot
become coplanar.

3.1 Case 1: R2z 6= 0
From the forward kinematics, we know that:

R2z =−s2s4 (18)
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R2z 6= 0 implies that both s2 6= 0 and s4 6= 0. Then we can
perform the following substitutions:

s4 =
−R2z

s2
(19)

This results in a pair of linear equations in cosθ4 and
cotθ2:

[
s1 c1R2z
−c1 s1R2z

][
cosθ4
cotθ2

]
=

[
R2x
R2y

]
(20)

We can find tanθ2 by solving this pair of linear equations,
and constrain the solution to lie in the range (0°, 90°). These
equations also give us cosθ4, with which we can find tanθ4:

tanθ4 =
−R2z

s2 cosθ4
(21)

θ4 is computed using the four-quadrant inverse tangent
function atan2(x,y) as it lies in the range (-180°, 180°). An
inverse tangent function is preferred over an inverse cosine
function due to greater numerical stability. Once θ1, θ2 and θ4
are known, equations (6) and (12) reduce to linear expressions
in terms of sinθ5 and cosθ5:

[
−c2 −c4s2
−c4s2 c2

][
sinθ5
cosθ5

]
=

[
R1z
R3z

]
(22)

θ5 can be obtained using the inverse tangent function
atan2(x,y), and constrained to lie in the range (0°, 180°).
Once all joint angles are known, equations (13-15) yield three
candidate solutions for the length of the prismatic joint d3:

d1
3 = (Px− l2c1s2+ l3(c5s1s4 + c5c1c2c4)− l3c1s2s5)/c1s2

(23)

d2
3 = (Py− l2s1s2− l3(c5c1s4 + c5s1c2c4)− l3s1s2s5)/s1s2

(24)

d3
3 = (Pz− l1 + l2c2 + l3c2s5 + l3c4c5s2)/c2 (25)

The candidate for d3 that lies within the range [0.33 m,
0.45 m] is chosen as the solution.

3.2 Case 2: R2z = 0
A different strategy must be employed in situations when R2z
is zero. Since R2z = s2s4, and we have restricted θ2 to lie in
the open interval (0°, 90°), R2z = 0⇒ s4 = 0. Additionally,

Figure 6. All links of the robotic arm become co-planar
when θ4 = 0.

since θ4 is also restricted to be in the open interval (-180°,
180°), we obtain θ4 = 0.

This places the robot in a configuration similar to the one
shown in Fig. 6, where all the links of the arm become co-
planar. With θ4 = 0, equations (4, 5) and (10 - 12) simplify
to:

R1x =−c1cos(θ2 +θ5) (26)

R1y =−s1cos(θ2 +θ5) (27)

R3x =−c1sin(θ2 +θ5) (28)

R3y =−s1sin(θ2 +θ5) (29)

R3z = cos(θ2 +θ5) (30)

This gives us the sum (θ2 +θ5):

tan(θ2 +θ5) =
R3x

R1x
=

R3y

R1y
(31)

To find the the joint angle θ2 separately, we look at the
triangle formed by the points O0, O2 and O5, as shown in
Fig. 7.

The edge lengths t1, t2 and t3 of this triangle are known
quantities, since the vector ~O0O2 is fixed, and the vector
~O0O5 can be found using the last column of the matrix T 5

0
in equation (16). We can apply the cosine formula to this
triangle:

t1 =
∥∥∥ ~O0O2

∥∥∥ (32)
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Figure 7. O0, O2 and O5 are coplanar. The triangle formed
by these points is used to find θ2.

t2 =
∥∥∥ ~O0O5

∥∥∥ (33)

t3 =
∥∥∥ ~O0O2− ~O0O5

∥∥∥ (34)

cos(π−θ2) =
t2
1 + t2

3 − t2
2

2t1t3
(35)

We can now solve for θ2:

θ2 = π−acos([
t2
1 + t2

3 − t2
2

2t1t3
]) (36)

Once θ2 is known, we get two possible candidates for θ5:

θ5 = tan−1 R3x

R1x
−θ2 = tan−1 R3y

R1y
−θ2 (37)

Having found all the joint angles, we can proceed as in
Section 3.1, using equations (23 - 25) to find d3, the length of
the prismatic joint.

4. Constraints on Solutions
In Sections 3.1 and 3.2, we chose between multiple candidate
solutions by applying the condition that the variables must
lie within the intervals specified in Table 1. Apart from these,
there are also conditions on the revolute joint angles θ1 -
θ5 that arise from the forward kinematic equations. These
conditions make use of the individual transformation matrices
T i+1

i for each row of Table 1.
Let us consider the product T 1

0 T 2
1 T 3

2 :

T 1
0 T 2

1 T 3
2 =


−c1c2 −s1 c1s2 d3c1s2
−c2s1 c1 s1s2 d3s1s2
−s2 0 −c2 l1−d3c2

0 0 0 1

 (38)

The entry in row 3, column 2 of this matrix is zero. Using
equation (2), we can compute this matrix in terms of the final
transformation T 6

0 :

T 1
0 T 2

1 T 3
2 = T 6

0 [T
4

3 T 5
4 T 6

5 ]
−1 (39)

Equating corresponding matrix entries at row 3, column
2 on both sides, we obtain the following condition on θ4 and
θ5:

R1zc5s4−R2zc4 +R3zs4s5 = 0 (40)

Similarly, in the product T 4
3 T 5

4 T 6
5 , the element at row 3,

column 2 is also zero:

T 4
3 T 5

4 T 6
5 =


c4c5 s4 c4s5 l3c4c5
s4c5 −c4 s4s5 l3s4c5
s5 0 −c5 l2 + l3s5
0 0 0 1

 (41)

This can also be written in terms of the final transforma-
tion matrix:

T 4
3 T 5

4 T 6
5 = [T 1

0 T 2
1 T 3

2 ]
−1T 6

0 (42)

Similar to equation (40), we obtain the following condition
on θ1 and θ2:

R2xc1s2−R2zc2 +R2ys1s2 = 0 (43)

Candidate IK solutions that do not satisfy conditions (40)
and (43) are rejected.

5. Evaluation
The analytical IK solution presented here is exact. It should
yield no errors if the computations are performed with infinite
numerical precision. However, the inverse tangent and inverse
cosine functions used in our formulation are numerically sen-
sitive, and are susceptible to propagation of errors [7].

To evaluate the quality of our solution, we follow the pro-
cedure by which a robotic arm is generally actuated, where the
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joint angles for a desired pose are computed using IK and sent
to the motors, resulting in an end-effector pose through FK.
Our evaluation measures the numerical errors that will mani-
fest in a physical implementation of this pose reconstruction,
even with the assumption of arbitrarily precise actuators.

The bounding volume of the robot’s workspace lies in a
hemispherical shell of inner radius ri = dmin

3 + l2 and outer
radius ro = dmax

3 + l2 + l3. We sample end-effector positions
from uniform distributions in X , Y and Z coordinate ranges
within this volume. Orientations are sampled as Yaw-Pitch-
Roll Euler angles from uniform distributions in the range [0,
2π] for yaw and roll, and [0, π] for pitch (Fig. 8).

Figure 8. Schematic of the sampling process for IK
evaluation: 3-D poses are sampled from within a
hemispherical volume, lying between radii ri and ro, that
bounds the robot’s workspace.

Each sampled pose is represented by a position vector ~P,
and a rotation matrix R constructed from these Euler angles.
From the IK computation on this pose, we obtain a vector ~Θ
of joint variables. This pose is reconstructed into a position
~P′ and rotation matrix R′ on applying FK equations to ~Θ. We
consider the absolute error as the accuracy metric for position:

∆Xabs
∆Yabs
∆Zabs

=

|Px−P′x|
|Py−P′y|
|Pz−P′z |

 (44)

For the accuracy of rotation reconstruction, we consider
the geodesic metric on the rotation group SO(3), as described
in [10]:

∆Rabs = ||log(R′RT )|| (45)

Where the norm of a matrix A is defined as:

||A||=
√

1
2

trace(AT A) (46)

This metric returns the magnitude of rotation angle in the
range [0,π) measured along the geodesic between R and R′

in SO(3). It captures rotational deviation more accurately
compared to the Euclidean distance between Euler angles,
since a smaller Euclidean distance can map to a larger distance
in SO(3) and vice versa [10].

Table 2. Absolute errors in pose reconstruction

Quantity Mean Std. Dev.
∆Xabs (m) 6.099 ×10−3 6.543 ×10−3

∆Yabs (m) 6.092 ×10−3 6.554 ×10−3

∆Zabs (m) 1.681 ×10−2 1.448 ×10−2

∆Rabs (rad) 5.343 ×10−2 1.972 ×10−1

We sampled 107 poses in the robot’s bounding workspace
volume, out of which N = 7.4×106 poses satisfied the con-
straint equations (40) and (43), and were within the range of
prismatic joint lengths. Table 2 lists the means and standard
deviations of the absolute position and orientation errors for
the reconstruction of these poses. The mean position errors
are in the range of ∼ 6 mm in the X and Y coordinates, and
∼ 2 cm in the Z coordinate. These errors respectively corre-
spond to 1.18% and 3.92% of the arm’s total maximum length
(0.51 m). The mean error in the Z coordinate is higher than in
X and Y , possibly due to the greater sensitivity of Pz to errors
in the estimate of the prismatic joint length d3 (equation 15).
The mean orientation error is ∼ 0.054 radians, or just above
3°.

6. Conclusion
We presented an analytical solution for the inverse kinematics
of a 5-DoF wearable robotic arm with a prismatic actuator
present in the serial chain. We validated our solution by
testing it on 107 randomly generated poses, and found that
we were able to achieve orientation targets to within 4°, and
position targets to within 2 cm in terms of numerical errors.
We also derived constraints on the joint variables to verify the
correctness of solutions for a particular end-effector pose.

Although this method returns solutions for poses that lie
within the subspace reachable by our 5-DoF arm, it is numer-
ically unstable for poses that lie near the ends of the joint
variable ranges. On the physical robot, we would require ap-
proximate solutions for planned end-effector trajectories that
may contain poses near these singular points. In such cases,
we can augment our analytical solution with a numerical ap-
proach, such as gradient descent-based search [9] to obtain a
more stable, hybrid solution.

In the context of developing control methods for the wear-
able robotic arm, the analytical inverse kinematics solution
presented here will reduce the computational costs compared
to a numerical strategy, leading to better responsiveness of the
robot to the user.
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