Abstract
This paper presents the design of a wearable robotic forearm that provides the user with an assistive third hand, along with a study of interaction scenarios for the design. Technical advances in sensors, actuators, and materials have made wearable robots feasible for personal use, but the interaction with such robots has not been sufficiently studied. We describe the development of a working prototype along with three usability studies. In an online survey we find that respondents presented with images and descriptions of the device see its use mainly as a functional tool in professional and military contexts. A subsequent contextual inquiry among building construction workers reveals three themes for user needs: extending a worker’s reach, enhancing their safety and comfort through bracing and stabilization, and reducing their cognitive load in repetitive tasks. A subsequent laboratry study in which participants wear a working prototype of the robot finds that they prioritize lowered weight and enhanced dexterity, seek adjustable autonomy and transparency of the robot’s intent, and prefer a robot that looks distinct from a human arm. These studies inform design implications for further development of wearable robotic arms.