Abstract
With the aim of attaining increased fluency and efficiency in human-robot teams, we have developed a cognitive architecture for robotic teammates based on the neuro-psychological principles of anticipation and perceptual simulation through top-down biasing. An instantiation of this architecture was implemented on a non-anthropomorphic robotic lamp, performing a repetitive human-robot collaborative task. In a human-subject study in which the robot works on a joint task with untrained subjects, we find our approach to be significantly more efficient and fluent than in a comparable system without anticipatory perceptual simulation. We also show the robot and the human to improve their relative contribution at a similar rate, possibly playing a part in the human’s “like-me” perception of the robot. In self-report, we find significant differences between the two conditions in the sense of team fluency, the team’s improvement over time, the robot’s contribution to the efficiency and fluency, the robot’s intelligence, and in the robot’s adaptation to the task. We also find differences in verbal attitudes towards the robot: most notably, subjects working with the anticipatory robot attribute more human qualities to the robot, such as gender and intelligence, as well as credit for success, but we also find increased self-blame and self-deprecation in these subjects’ responses. We believe that this work lays the foundation towards modeling and evaluating artificial practice for robots working in collaboration with humans.